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A simple systematic method to treat diffusion processes
due to given electromagnetic fluctuations

NIFS N.Nakajima
03/12/15

Background

1. In given electromagnetic fluctuations, there are cases that the transport of
test particles is regarded as a diffusion process due to stochastic instability
of orbits.

2. In such cases, the diffusions due to electric fluctuations and magnetic fluc-
tuations were considered separately. There is no systematic way to treat
such diffusions in a same framework.

3. To develop such a systematic method is quite meaningful even if the fields
are given, because the systematic treatment and the results give the most
fundamental basis when we interpret the results of self-consistent electro-

magnetic numerical simulations.
Purpose

1. To develop a simple systematic method to treat the diffusion process of
test particles by given coexisting electric and magnetic fluctuations.

2. To clarify the differences of the diffusion processes between electric and
magnetic fluctuations.

3. To clarify the differences of the diffusion processes between electrons and

10ns.
Outline

1. A simple systematic method for diffusion processes
2. Application to electromagnetic fluctuations

3. Summary and discussions
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1 A simple systematic method for diffusion processes

1. deterministic equation :
Given fields do not have stochastic properties.

T o= hz,1) + g(@,1)
N—— N——
part without fluctuation part due to fluctuation

|l by stochastic instability of orbits
2. Stochastic Differential Equation (SDE)

(a) Basic equation

z = h(z(t),t) + g(z(t),1),
g(z(t),t) = stochastic part

(b) the formal solution

z(t) = x(t;zo,to), o= x(to)

— () + [ drgtatr). ),

to

(x(t)) = x0+/ drh(z,(7), 7).

to
x,(t) = unperturbed orbit or averaged orbit,

cf quasi-linear treatment

() = (zu() + / dri(za(r), 7),

to

(c) the stochastic properties of g :

Gaussian with no mean value



Integrated Simulation WS 3

3. Lagrangian autocorrelation function R(t, 7)
Let

Ga(t),t) = > gr, cos(kyz(t) + 0k, — wi,t),

then

R(ta T) = <§(5U_(t)7 t)

X <cos i (@(0) = iyt + 6+ /t t dt G (x(t), tl)]

dtog(z(ta), tg)] >

T

cos | ki (x(7)) — Wit T+ Oy + k| /

to

Let
a(k,t) = ky{z(t)) — wkt+ 0,
t

Bk t) = kH/t dtg(z(t), 1)

then (from Gaussian properties)

R(t7) = 530S

i Ry
x {cos [athy,0) — akf, )] exp [_% <<5(k||at) - B(’fﬁﬁ)fﬂ
+ cos [a(kn,t) + oz(k|’|,7)] exp [_% <(ﬁ(k||,t) +ﬁ(k|’|,7))2>} }
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where

<(5(/€||at) + ﬂ(kﬁm))2>
= ki /tdtl /tdtQR(tl,tQ)

+ 2]43” k”:f:k /dtl/ dtQR tl,tg
to

to to

Thus, the Langrangian autocorrelation function is renormalized:
R(t,7) = F[R(t,7)] : Renormalization

() : ensemble average, We do not use other averages.

4. Running diffusion coefficient at x = x

1d

D(t.to) = 5 (@) = @(®)?).

-3 {[[ o)

_ / dr (§(a(t), t)g(a(r), 7))

to

_ / IR T)

to

Long term limit, R (¢, 7) becomes stationary and has the finite autocorre-

lation time 7,,.:

D 1
R(t ~ R(t— ~ e /T ac ™~ 79
(t,7) (t—r7) Tace T, kﬁ i)
lim D(t,tg) o const. :  normal diffusion

t—T>>Tac

5. Realization of the stochastic instability
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(Based on J.A.Krommes)

D o > g; H(wo, D, ky)

K
1 kaax
Z = — : averaging out fine structures
D 1 kaax 9 H D k

k| |min
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2 Application to electromagnetic fluctuations
2.1 Deterministic equation

(guiding center approximation based on Little John)

§+6§+V X (,0||§)

vl B + 5B|| + p||J||
X . (6§)L + {V X (p”B))]l
— + 7, —
UL, vl ] B+ 5B|| + p||J||
N g ?J|| eB
= — = - Q= —
n B7 I0|| Q? m7

§B = Vx84, §A=aB=05A).

OD le
Ex B
numerator = zxb . B x B drift
B2
SE x B 5B
+ B>; +U||( B)L : drifts due to fluctuation
n mleVB+m%BxV S ther drift
— — | : other drifts
2eB3 eB4 2
- B Jj 0B
denominator = 1+ p— +

B ' B
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(Simplification of basic equations)

1. Low-/3 approximation

2. Large aspect ratio approximation

3. Evaluation of VB and curvature drifts based on a model field

B

Et

— B[l—EtCOSQ_EhCOS(LQ_MC)L

Simplified equations of orbit become

dr
dt

g
dt

d¢
dt

r 7 2
= Ea En = €ha (a) )
1 (r)2 0B 0B |
i R Rt 2
rB |\ R ¢ a0 |, .. R’
o] o1
Blor],.. R
vl
L osA 1095 U
"B 00 B o0 RO
+ 1 do¢
R Bar
2
vy
1 964, 135¢ o TV
'U|| _|— )
rB Or rB Or RO
oL (L)Qt 1 dé
HR R rB dr
ﬁ%—zﬁ
1 904 1 00 2 I
UHTB or rB Or RO
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Only particles satisfying

1. for magnetic fluctuations

1

1 954 5B, Uit (6B p
Iy o0 | T [ B ‘>> QR (B >>E>’
2. for electric fluctuations
1, 2
1 06¢| ‘6E9 ULty (5159 . ﬁ)
rB 00 B QR '~ \vB R)’

mainly contribute to the transport by fluctuated fields.

In opposite limit, the neoclassical transport becomes dominant under

the Coulomb collision.

Under the above constraints for the velocity space:

the most simplified equations of orbit are

dr 1 8514” B 1 0d¢

a UHTB 00 rB 00’

ﬁ i 1 8514” n 1 85¢
dt UHR WExB UHTB or rB Or’
dc |

— ~ U —.

dt 'R

1. Only passing particles mainly contribute to the diffusion due to
fluctuations.

2. the parallel velocity v|| is treated as a parameter (not a stochastic
variable)
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2.2  Stochastic Differential Equations

1. Simplified deterministic equations:

dr

dt

do

dt

dg

dt

1 904 B 1 00¢

~ UH?”B 00 rB 00’
<t 1 (%AH X 1 35¢
UHR WExB UHTB or rB Or’

1

~ Ug

2. The form of fluctuations :

5A||

Z OA || (1) cos [nC — mf 4 50 wqu?t] :

Z dmn () cOS {n( —mf + 609 — wgﬁ)t] :

1 904 B 1 00¢
rB 00 rB 00

S {5 () sin [ — b+ 55 — 1]

4l

mn

m i _ (50) _ ,(59)
TBégbmn(r) sin [n( ml + 0,.0) — w, ¥ t} }

1 904 B 1 00
rB 00 rB 00

Yl

U 99 Ajma(r) _ (04) _ (64
%n: { B & COS {n{ ml 4 6,77 — wyo t}

1 06¢mn(r)
rB or

oS {ng —mh + 609 — wfgg)t] }
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3. Corresponding Stochastic Differential Equations:

dr
dt

g
dt

d¢
dt

4. The solution of SDE

r(t0)+/ dr g, (r(7),T),

t

gr(r(t), 1),

~ U||E — WExB — g@(F(t)at)7

0(to) + [UII% — wExB]

/
- WExB]

t
/ dng (7"
to

r(t)=r(to)

(1), 7),

(t — o)

r t):T(t() )

t

t/
dt /t dr g, (7(1),7)

0

10
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2.3 Lagrangian autocorrelation function

Rep(t,m) = ((r(t) = {r(0)) = (3:(7(1),0)g,(7(7), 7))
Reo(t,m) = ((r(t) = {r())(0(t) = (0(t)))) = (g-(r(
Roo(t,7) = ((0(t) = (0(1)))*) = (Go(7(t), )3(7(7), 7))

By using cumulant expansion and Gaussianity with no mean value:

00 N\ 1.,
<€—ikx> _ eXp{Z (_Zlk) Cl} N <€ii§> — 1ie 2 <§>
where

f = a[ dtlgg( (tl) t1)+b/t7—dt299(77( ),tg),

0

to to 0 to
t t T T

<§2> = CLQ/ dtl/ dt\Rep(ty, ) + b* dtl/ dt\ Roe(ty, 1))
to to to to

T T 2 th
+ d2/ dt2/ dté/ dtl/ Aty R (t1, 1)
+ / dtg/ dtQ/ dtl/ dt Rrr tla

R.r, Rrg, and Ryy are functional of R,,., R,9, and Rey.
Rrr — Frr [Rt%a Rr@a Rr?‘]a RT9 — Fr@ [R997 Rr@; Rrr]; RH@ — F99 [R997 Rr@; Rrr]
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Long term limit, stationary with an autocorrelation time:

Deo - T _
Roo(t,7) ~ eXp{ pralt 9 o Dy
C
D 0 t—T1 ~1/2
Reo(t,7) ~ = exp{——7}, 71/ o D/
TGC TGC
D t—T _
Rt 7) ~ —Lexp{———1}, 77 o D'?
Tac ac

FOI‘t—T>>maX{ Tacs a07 ac}

()

= a?(t — to) + (2ab + b*) (1 — to) < Ry
b ac( — £2) + (ad + bd) (7 — £2) + 2be(r — to)(t — ty — %(T 1)) <« R
+ %{02(75 — 1) + (20d + ) (7 — t0)*} = R,

Hereafter, we assume

1. Low magnetic shear and low electric shear
¢~ 0, wp.p ~ 0,
because I could not obtain the following indefinite integral:
/dtsin(ozt)eﬁtg, /dt cos(at)e ™™, (8> 0)

2. for closure

27299 ~ m2<

Q : typical value of Q.
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2.4  Diffusion coefficient

the radial diffusion coefficient is

t
D, = lim AR (t,T)

t*t() > Tac tO

- (o]

m5A| |mn m6¢mn

— Y rB rB

m2D9

X

oS {5(&4) _§09) (04

mn mn mn

)

5A
[k||v|| + MWpy B — W

771514| |mn m(squn

— Y rB rB

m2D9

)} t [m? Dy’

oS [5(&4) 09 (04

mn mn mn

X

I n—me 1
|| - ) Tac ~ mQDe

R

2D9 ~ m2<

2
[kHUH + MWExB — wfgﬁ)] + [m2D9]2

k,

rk

0

) D, ~ EiDr, TE@ ~ M.

13

— i)t - )]}

~ it - )] |
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2.5 Realization of the stochastic instability

1. Stochastic instability of orbits is brought by influences of simultaneous
multiple waves on orbits.

2. Particles feel infinite number of waves along their perturbed orbits.

3. To express this situation,
the finite summation of the discrete parallel wave number is replaced
by the integration of the continuous parallel wave number
information of fine structure of fluctuations is discarded

= coarse graining.

IEDIES Dol AN
dk),
mkH Ak k||min(<0)
On Ak
/ Qdx Qdx
Z Qv = Z Qi ~
/ dx
thus
5'l€||ma:c - 5k||mm Nmaz — Nmin 1
Ak — = ~ —
I N RN R’
2
L, = AZ ~ 2mR : parallel correlation length.
|
On 5k||
except for boundaries of the stochastic region,
kg R r dq
—0K|jmin ~ OK|jmex = 0k)| = , Ly=——
| | I kL. /5] §= qdr’

1 1
Ok ~ I for kg < kp, ~ L_|| for |s| ~ 1.
ko
kL

Y

(> 1) for zonal flow with k. > kg
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The resultant diffusion coefficient is
|| 2/5 ! [ méAllmkn]
5k rB

moAj,, OO,
_— [k T ¢ ki COS [5(5A) . 5(5¢>) _ (W(M) (M))(t _ to)}}

rB B miky Dy mn

m2D9

X 72

[k}HUH + MWE«xB — wgﬁl) + [mQDg]Q

Z/ékll [mégbmk”
(Sk'” -
m5A||mk m5gbmk 5A 8¢

— Y

m2D9

5 .
{kHU” + mMwExp — W;f;fl)l} + [mQDG]Z

By assuming moderate variations of the amplitude and the frequency:

mky Tk mn

X / dkH m ’

2
[kHUH + MWExB — <w£§£)>k ] + [m2Dy]?
I

L|| m5¢mk 2
ez{la

m5A||mkH m5¢mk“ (6A) (0¢)
B (64 (5¢) _
— 5 cos [6mk” O, (wWyy )( L‘o)} >

5/€H 2D
X / dkH m ’

2
—o0k
I [kHUH + Mwe«xp — <w7(7§2))>k; ] + [mQDg]Q
[l

MO Ak, MO D cos [5(5/1) — 509 () 04) 00y to)}>
l

— Y
Ky
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16

L m5Allmku ’
Dr ~ Ezm: <U [ TB
méAHmk méquk SA 5
B H rB " cos [57(”’?) B 57(”’(?\7 B (wgf) (6¢))(t B to)]>
Ky
Ok — (<%§fﬁ>> —mexB)
x { Tan! by
m2D9
5]€||U|| + (<w$2?>k — mexB)
1 I
+ Tan 2D,
L” m5¢mk|| 2
Z<U [ rb
méAHmk méquk SA 5
B H rB " cos [57(”’?) B 57(”’(?\7 B (wgf) (6¢))(t B to)]>
Ky
Ok — (<w7§f§f)> - mWExB)
x { Tan! U hy
m2D9
Ok + (<w7§f§fﬂ> - mme)
+ Tan~! ll

m2D9
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In the final velocity space integration, the integration of v may be symmetric,

Vijo

namely, ( / dv), so that the cross term between electric and magnetic
~Vijo

fluctuations disappears:

N = (W) g, o0 = (W80) —mups,
Dy (v, o, @)~ f_wz<v [méfgmw] >
. ki
cre ),
" I
(o] i)
. ul
8 { Tan™ 5k||?;l;2_DfﬂfA> + Tan! 5]{”?2;2—;'5%4) }
G,
" I
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1

In order to obtain limiting cases, Tan™ "z is approximated by

(o T

— for z > —

2 2

Tan 'z ~ { =z for |z| < g
I for » < T

. 2 2
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2.6 Cases with only magnetic fluctuations

Scale separator for magnetic fluctuations : Ry

Ar . radial displacement in the ballistic phase; ~ v,a At ~ v, Ly /||

L, : perpendicular correlation length of the fluctuations

2
H _ ﬂ Z 6B’I“mk'||
L, L, — B "

Ry < 1 = scale separable

&
=
Il

Amplitude distinguishes several limits.

1. Low frequency limit : ‘djffzm‘ < gEzDr

(a) low amplitude limit (quasi-linear limit)

0B, _
|U|Z<( kll) > , for b, L Ry < 1.
k

I
Averaged (unperturbed) orbits are good approximation.
(b) high amplitude limit

L 6B N2\ 0k
D, ~ |y Z<< k”) > kH for k,L Ry > 1.
ki

r

Diffusive (perturbed) orbits are good approximation.

2. High frequency limit : ‘L:J?(;EA)‘ > gEiDr
Averaged (unperturbed) orbits are good approximation.
(a) high velocity limit

L|| rmk ? W
UZ<< ) >k , for |vy| > T
I

(b) low velocity limit
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2.7 Cases with only electric fluctuations

Scale separator for electric fluctuations : Rpg

Ar . radial displacement in the ballistic phase; ~ v,pAt ~ v,.pL/|v)|

L, : perpendicular correlation length of the fluctuations

AT L” (6E9mk|| ) 2
R _ - _r 7
E LL Ll zm: < |U|||B B

Rrp < 1 = scale separable

Velocity and Amplitude distinguish several limits.

1. Low frequency limit : ‘@g¢)‘ < gEzDT
(a) high velocity limit

L|| 5E9mkH —
r ~ 4UZ<< ) s for ]{T.LJ_RE S 1.
I

Averaged (unperturbed) orbits are good approximation.
(b) low velocity limit

L S Epmi N2\ Ok
D, ~ Z<< o k) > H , for k,L Rg > 1.
k:

ky

Diffusive (perturbed) orbits are good approximation.

2. High frequency limit : ‘a)ﬁ‘i‘”‘ > gEiDT
Averaged (unperturbed) orbits are good approximation.

(a) high velocity limit

Ly 5E9mk|| W
Prom 4U|Z<( . for bl = Ok
Il

(b) low velocity limit
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2.8 Cases with electromagnetic fluctuations

1. low frequency limit :

W7(n ‘N

wm ‘<< kD

(a) low amplitude and high velocity limit

L|| léBrmk ] 2 1 [5E9mk ] 2
D, ~ — v + :
41%;< B oy L B ‘

for erl('RM-FRE) < 1,
Averaged (unperturbed) orbits are good approximation.
(b) high amplitude and low velocity limit

1/2

Ly 0Brmiy 1> [6Eomr, 17\ 0k
oo~ (e [ ]) B
I

r

for k.Li(Ry+Rg) > 1,
Diffusive (perturbed) orbits are good approximation.
2. high frequency limit : ‘@ffi‘“‘ ~ ‘ ‘ > k‘ D,

Averaged (unperturbed) orbits are good approx1mati0n.
(a) high velocity limit

@gm‘ @gm‘
f > ~
or loi Ok Ok
(b) low velocity limit
il

D, ~ 0, for ‘UH‘ <

ok ok
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2.9 Velocity space integration

Sorry, I have no time to perform it.

In the case of straight cylindrical tokamak plasmas, there are no constraints on

velocity space.
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3 Summary and discussions

1. A simple systematic method to treat the diffusion processes is developed
on the basis of the Lagrangian autocorrelation function.

2. Analytical expression of the diffusion coefficient is obtained, even if electric
and magnetic fluctuations coexist.

3. The differences of diffusion processes between magnetic fluctuations and
electric fluctuations will be clarified.

4. The differences of diffusion processes between electrons and of ions will be
clarified.

Remaining problems

1. Velocity space integration
2. Extension to finite magnetic shear and E x B velocity shear
3. Ambipolarity by the radial electric field



