2001-10-08 7th IAEA Technical Committee Meeting on Energetic Particles in Magnetic Confinement Systems Göteborg, Sweden

Analysis of Alfvén Eigenmodes Driven by Energetic Ions in Toroidal Plasmas with Weak or Negative Magnetic Shear

A. Fukuyama and T. Akutsu Department of Nuclear Engineering, Kyoto University, Kyoto 606-8501, Japan

Contents

- Full Wave Code TASK/WM
- Effect of Negative Magnetic Shear
- Effect of Toroidal Rotation on TAE
- Summary

Linear Stability Analysis of Alfvén Eigenmode

- MHD Analysis (Ideal, Resistive)
- MHD including Kinetic Effect (perturbative)
 - ° Eigen function from MHD analysis, Growth rate including kinetic effects
- **Kinetic Analysis** (Electron thermal motion, Ion gyromotion, Drift motion)
 - PENN code (Jaun, Alfvén Lab)TASK/WM (Fukuyama)
- Ballooning Expansion (High n mode)
 - HINST (Gorelenkov, Cheng) 2D-WKB (Vlad, Chen, Zonka)

• 3D Full Wave Code: TASK/WM

- ° Magnetic surface coordinates from MHD Equilibrium Analysis
- ° Boundary value problem of Maxwell's equation. Dielectric tensor)
- ° Fourier mode expansion in poloidal and toroidal direction, FDM in radius)
- $^{\circ}$ Looking for complex eigen frequency which maximize the integral of wave field.

Magnetic Flux Coordinates

- Flux Coordinates (Non-Orthogonal)
 - Minor radius direction: Poloidal magnetic flux ψ
 Poloidal direction: θ
 Toroidal direction: φ
- Co-variant expression of \boldsymbol{E}

$$\boldsymbol{E} = E_1 \boldsymbol{e}^1 + E_2 \boldsymbol{e}^2 + E_3 \boldsymbol{e}^3$$

where contra-variant basis

$$e^1 = \nabla \psi, \qquad e^2 = \nabla \theta, \qquad e^3 = \nabla \varphi$$

• J: Jacobian $J = \frac{1}{e^1 \cdot e^2 \times e^3} = \frac{1}{\nabla \psi \cdot \nabla \theta \times \nabla \varphi}$

• g: Metric tensor $g_{ij} = \boldsymbol{e}_i \cdot \boldsymbol{e}_j$, where co-variant basis $\boldsymbol{e}_i \equiv \partial \boldsymbol{r} / \partial x_i$

 \bullet Maxwell's equation for stationary wave electric field ${\boldsymbol E}$

(angular frequency ω , light velocity c)

$$oldsymbol{
abla} oldsymbol{
abla} imes oldsymbol{
abla} imes oldsymbol{B} imes oldsymbol{E} = rac{\omega^2}{c^2} \overleftarrow{\epsilon} \cdot oldsymbol{E} + \mathrm{i}\,\omega\mu_0 oldsymbol{j}_{\mathrm{ext}}$$

- $\circ \overleftarrow{\epsilon}$: Dielectric Tensor [Effects of finite temperature (Cyclotron damping, Landau damping) $\circ \mathbf{j}_{ext}$: Antenna Current
- Wave Equation in Non-Orthogonal Coordinates (radial components)

$$\begin{split} (\boldsymbol{\nabla}\times\boldsymbol{\nabla}\times\boldsymbol{E})^{1} &= \frac{1}{J}\left[\frac{\partial}{\partial x^{2}}\left\{\frac{g_{31}}{J}\left(\frac{\partial E_{3}}{\partial x^{2}} - \frac{\partial E_{2}}{\partial x^{3}}\right) + \frac{g_{32}}{J}\left(\frac{\partial E_{1}}{\partial x^{3}} - \frac{\partial E_{3}}{\partial x^{1}}\right) + \frac{g_{33}}{J}\left(\frac{\partial E_{2}}{\partial x^{1}} - \frac{\partial E_{1}}{\partial x^{2}}\right)\right\} \\ &- \frac{\partial}{\partial x^{3}}\left\{\frac{g_{21}}{J}\left(\frac{\partial E_{3}}{\partial x^{2}} - \frac{\partial E_{2}}{\partial x^{3}}\right) + \frac{g_{22}}{J}\left(\frac{\partial E_{1}}{\partial x^{3}} - \frac{\partial E_{3}}{\partial x^{1}}\right) + \frac{g_{23}}{J}\left(\frac{\partial E_{2}}{\partial x^{1}} - \frac{\partial E_{1}}{\partial x^{2}}\right)\right\}\right] \\ \circ (x^{1}, x^{2}, x^{3}) = (\psi, \theta, \varphi) \end{split}$$

 $^{\circ}$ Similar expression for poloidal and toroidal components

Example of AE in JT-60U

Parameters

R	$3.5016 {\rm m}$
a	$0.9837 {\rm m}$
κ	.2810
δ	0.3098
b/a	1.1
B_0	3.3119 T
$I_{ m p}$	$1.6945 \mathrm{MA}$
$n_{\rm e}(0)$	$0.2356 \ 10^{20} \mathrm{m}^{-3}$
$n_{ m e}(a)$	$0.05 \ 10^{20} \mathrm{m}^{-3}$
$T_{\rm e}(0)$	4.1 keV
$T_{ m e}(a)$	0.8 keV
$T_{\rm D}(0)$	3.7 keV
$T_{\rm D}(a)$	0.4 keV

Radial profile of Alfvén resonance frequency

Complex Eigen Frequency of Alfvén Eigenmode

Radial Mode Structure of Alfvén Eigenmode (n = 1)

Mode Structure with Energetic Particle

 $\operatorname{Re} f$ [MHz]

Analysis of TAE in Reversed Shear Configuration

Assumed q profile

Plasma Parameters

Major Radius	R_0	$3\mathrm{m}$
Minor Radius	a	1 m
Wall Radius	b	$1.2\mathrm{m}$
Toroidal Magnetic Field	B_0	3 T
Center Electron Density	$n_e(0)$	$10^{20} \mathrm{m}^{-3}$
Edge Electron Density	$n_e(a)$	$10^{20} \mathrm{m}^{-3}$
Central Temperature	T(0)	$3\mathrm{keV}$
Edge Temperature	T(a)	$3\mathrm{keV}$
Ion Species		Deuterium
Central Safety Factor	q(0)	3
Edge Safety Factor	q(a)	5
Toroidal Mode Number	n	1
q-Minimum Radius	$ ho_{ m min}$	0.5

q_{\min} Dependence of Alfvén Frequency Profile

q_{\min} Dependence of Eigen Frequency and Damping Rate

Experimental Results on JT-60U

M. Saigusa et al., Nucl. Fusion 37 (1997) 1559.

 $\textbf{Co-NBI} \longrightarrow \textbf{Counter-NBI}$

 $\mathbf{Counter}\text{-}\mathbf{NBI} \longrightarrow \mathbf{Co}\text{-}\mathbf{NBI}$

$$\left[k_{||m}^2 - \frac{(\omega - k_{||m}u)^2}{v_{\rm A}^2}\right] \left[k_{||m+1}^2 - \frac{(\omega - k_{||m+1}u)^2}{v_{\rm A}^2}\right] - \epsilon^2 \frac{(\omega - k_{||m}u)^2(\omega - k_{||m+1}u)^2}{v_{\rm A}^4} = 0$$

• Parallel wave number $k_{||m} = \frac{1}{R} \left(n + \frac{m}{q} \right)$

 \bullet Alfvén resonance condition without toroidal effect

$$\omega^{2} = k_{||m}^{2} (u \pm v_{A})^{2}, \qquad \omega^{2} = k_{||m+1}^{2} (u \pm v_{A})^{2}$$

• Condition for frequency gap

$$k_{||m} (u - v_{\mathrm{A}}) = k_{||m+1} (u + v_{\mathrm{A}})$$

• Safety factor : q

$$q = -\frac{m+1/2}{n} - \frac{1}{2n}\frac{u}{v_{\mathrm{A}}}$$

• Eigen frequency ; ω

$$\omega = \frac{v_{\rm A}}{2qR} (1 - \frac{u^2}{v_{\rm A}^2})$$

Effect of Rotation on n = 7 mode

• Rotation velocity dependence: Stabilizing for co-rotation (Contradict with exp.)

Influence of poloidal mode range : n = 7 mode

Summary

- We studied the linear stability of Alfvén eigenmode including the effect of kinetic Alfvén waves using the 3D full wave code, TASK/WM.
- Negative magnetic configuration supports GAE with single dominant poloidal mode number.
- The toroidal rotation changes the TAE eigen frequency mainly through the change of gap position and q value.
- Destabilization by co-rotation agrees with experimental observation in JT-60U, though the stability is sensitive to the Alfvén resonance near the plasma surface.

• Future work

- ° Analysis of destabilization by energetic ions
- Analysis of low-frequency modes with trapped particle effects