Bifurcation in Transport Barrier Formation

A. Fukuyama Department of Nuclear Engineering, Kyoto University

> in collaboration with K. Itoh, S.-I. Itoh and M. Yagi

- Transport Barriers in Tokamaks
- Transport Models and Simulation Results
- Possibility of Bifurcation
- Summary

Improved Confinement and Transport Barrier

• Edge Transport Barrier: H mode (ASDEX, 1982)

• Internal Transport Barrier: High β_p mode, Negative magnetic shear

• Fluctuation Amplitude

• Radial Electric Field

• ITB Formation by Current Ramp Up (JT-60U)

Shape of Internal Transport Barrier

• ITB: High β_p mode and Negative magnetic shear (JT-60U)

- Reduction of Transport Coefficients Due to
 - $^{\circ}$ Weak or negative magnetic shear
 - $^{\circ}$ Large shift of magnetic axis
 - $^{\circ}$ Large rotation velocity shear
- Positive feedback loop to enhance pressure gradient

- Mechanism of Turbulence Suppression
- $E \times B$ rotation shear

 $\circ E_r$ generation through radial force balance

$$E_r = -u_\theta B_\phi + u_\phi B_\theta + \frac{1}{e_s} \frac{\mathrm{d}}{\mathrm{d}r} P$$

 $\circ E \times B$ shearing rate (Hahm and Burrel)

$$\omega_E = \frac{RB_\theta}{B} \frac{\mathrm{d}}{\mathrm{d}r} \left(\frac{E_r}{RB_\theta}\right) \frac{k_\theta}{k_r}$$

 $^{\circ}$ Criteria for suppression

 $\omega_E > \gamma_{
m Lin}$

• Magnetic shear s and normalized pressure gradient α

° Marginal stability of self-sustained turbulence (CDBM model) ° Thermal diffusivity χ as a function of s and α

• Positive feedback of pressure gradient increase

 $^{\circ}$ In both models, χ depends on the pressure gradient.

 $^{\circ}$ In some case, not always, increase of pressure gradient reduces $\chi.$

• Self-Sustained Turbulence Theory

 $^{\circ}$ Turbulence sustained by the enhancement of transport coefficients due to the turbulence itself

- Current-Diffusive Ballooning Mode
 - $^{\circ}$ Ballooning mode: MHD mode localized in bad curvature region
 - Ideal ballooning mode (second stability)
 - -Resistive ballooning mode (plasma near edge)
 - Current-diffusive ballooning mode (core plasma)

Self-Sustained Turbulence

• Conventional Turbulence

- $^{\circ}$ Growth of linearly unstable mode
- $^{\circ}$ Saturation due to NL damping
- Transport coefficients proportional to the linear growth rate
- Self-Sustained Turbulence (K. Itoh et al., 1992)
 - $^{\circ}$ Weakly unstable in linear stage
 - $^{\circ}$ NL dissipation destabilizes the mode.
 - Saturation due to the balance between NL drive and NL damping
 - Supported by turbulence simulation (M. Yagi et al., 1995)

Basic Equations of CDBM

• Reduced MHD Equation (One fluid model including transport)

Equation of motion $\frac{\partial}{\partial t} \frac{n_0 m_i}{B_0} \nabla_{\perp}^2 \phi = B_0 \nabla_{\parallel} j_{\parallel} + \nabla p \times \nabla \frac{2r \cos \theta}{R_0} \cdot \hat{z} + \mu \frac{n_0 m_i}{B_0} \nabla_{\perp}^4 \phi$ Ohm's law $\frac{\partial}{\partial t} A = -\nabla_{\parallel} \phi - \eta j_{\parallel} + \lambda \nabla_{\perp}^2 j_{\parallel}$ where $j_{\parallel} = -\frac{1}{\mu_0} \nabla_{\perp}^2 A$ Energy equation $\frac{\partial}{\partial t} p + \frac{1}{B_0} \nabla \phi \times \nabla p_0 \cdot \hat{z} = \chi \nabla^2 p$

- Transport Coefficients
 - $\mu\,$: Ion viscosity
 - $\eta~:$ Resistivity
 - λ : Current diffusivity
 - χ : Thermal diffusivity

 μ, λ, χ : Classical (collisional) + Turbulent (amplitude-dependent) η : Classical (collisional)

• Calculate growth rate for given μ , λ , χ (given amplitude)

• **Ballooning Mode Equation** (normalized, *m*: poloidal mode number)

$$\gamma f^2 \phi = \frac{\partial}{\partial \xi} \frac{f^2}{\gamma + \eta m^2 f^2 + \lambda m^4 f^4} \frac{\partial \phi}{\partial \xi}$$

$$- \mu m^2 f^4 \phi + \frac{\alpha}{\gamma + \chi m^2 f^2} \left[\kappa + \cos \xi + (s\xi - \alpha \sin \xi) \sin \xi \right] \phi$$

- $s \equiv \frac{r}{q} \frac{dq}{dr}$ • Magnetic shear
- Normalized pressure gradient $\alpha \equiv -q^2 R \frac{d\beta}{dr}$ Magnetic curvature $\kappa \equiv -\frac{r}{R} \left(1 \frac{1}{q^2}\right)$

$$q = rB_0/RB_{\theta}, \quad \beta = 2\mu_0 p_0/B_0^2, \quad f^2 = 1 + (s\xi - \alpha \sin \xi)^2$$

Current diffusivity λm^4 Destab. Reduce field-line bending effect μm^2 Stab. Enhance viscosity damping Ion viscosity Thermal diffusivity χm^2 Stab. Reduce pressure gradient effect

CDBM Turbulence

• Simple One-Dimensional Analysis

 $^{\circ}$ No impurity, No neutral, No sawtooth

- $^\circ$ Fixed density profile: $n_{
 m e}(r) \propto (1-r^2/a^2)^{1/2}$
- \circ Thermal diffusivity (adjustable parameter C = 12)

$$\chi_{\rm e} = C\chi_{\rm TB} + \chi_{\rm NC,e}$$

$$\chi_{\rm i} = C\chi_{\rm TB} + \chi_{\rm NC,i}$$

• Transport Equation

$$\frac{\partial}{\partial t} \frac{3}{2} n_{\rm e} T_{\rm e} = -\frac{1}{r} \frac{\partial}{\partial r} r n_{\rm e} \chi_{\rm e} \frac{\partial T_{\rm e}}{\partial r} + P_{\rm OH} + P_{\rm ie} + P_{\rm He}$$
$$\frac{\partial}{\partial t} \frac{3}{2} n_{\rm i} T_{\rm i} = -\frac{1}{r} \frac{\partial}{\partial r} r n_{\rm i} \chi_{\rm i} \frac{\partial T_{\rm i}}{\partial r} - P_{\rm ie} + P_{\rm Hi}$$
$$\frac{\partial}{\partial t} B_{\theta} = \frac{\partial}{\partial r} \eta_{\rm NC} \left[\frac{1}{\mu_0} \frac{1}{r} \frac{\partial}{\partial r} r B_{\theta} - J_{\rm BS} - J_{\rm LH} \right]$$

• Standard Plasma Parameter

$$R = 3 \text{ m}$$
 $B_{\text{t}} = 3 \text{ T}$ **Elongation** = 1.5
 $a = 1.2 \text{ m}$ $I_{\text{p}} = 3 \text{ MA}$ $n_{\text{e0}} = 5 \times 10^{19} \text{ m}^{-3}$

Simulation of L-mode and Improved Confinement

- Zero-Dimensional Analysis with fixed $F(s, \alpha, \kappa)$ (gyro-Bohm scaling) $\tau_{\rm E} \propto \ F^{-0.4} A_{\rm i}^{0.2} I_{\rm P}^{0.8} n^{0.6} B^0 a^{1.0} R_0^{1.2} P^{-0.6}$
- Deviation from L-mode scaling at low $I_{\rm p}$
 - \circ Increase of P_{in}
 - $^{\circ}$ Increase of pressure gradient \longrightarrow Increase of α

 - \circ Reduction of χ

• Various improved core confinement modes have been reproduced

- \circ High- β_p mode
- \circ PEP (Pellet Enhanced Performance) mode
- ° LHEP (Lower Hybrid Enhanced Performance) mode
- $^{\circ}$ Negative Magnetic Shear mode

High β_p mode (1)

- $R = 3 \text{ m}, a = 1.2 \text{ m}, \kappa = 1.5, B_0 = 3 \text{ T}, I_p = 1 \text{ MA}$
- one second after heating power of $P_{\rm H} = 20 \,\rm MW$ was switched on

• Time evolution during the first one second after heating switched on

High β_p mode (3)

• $P_{\rm H} = 24.2 \,\mathrm{MW}$

• $P_{\rm H} = 20 \,\mathrm{MW}$

High β_p mode (4)

• $P_{\rm H} = 24.4 \,\mathrm{MW}$

$$P_{\rm H} = 24.6\,{\rm MW}$$

Effect of $E \times B$ Rotation Shear

• Reduction of transport due to small s and large α : $F(s, \alpha, \kappa)$ \implies Rapid increase of rotation shear: $1/[1 + G(s, \alpha)\omega_{E1}^2]$ \implies Transition to enhanced ITB

Rapid Change of Rotation Shear

Thermal Diffusivity Before and After Transition

Simulation of Negative Shear Configuration

 $I_{\rm p}: 3\,{
m MA}\ {
m constant}\ {
m Heating}: 20\,\,{
m MW}\ {
m H}\ {
m factor}\simeq 0.95$

 $I_{\rm p}: 1\,{
m MA} \longrightarrow 3\,{
m MA}/1\,{
m s}$ Heating: 20 MW H factor $\simeq 1.6$

Evolution of Negative Shear Configuration

Bifurcation in Transport Barrier Formation

- Transition in barrier formation is soft or hard?
 - \circ ETB: Fast transition of $E_r \longrightarrow$ hard transition
 - ° ITB: Experimental observation ?; Theoretical approach
- Analysis of ITB based on CDBM model
 - \circ Constraint: Constant heating power $P_{\rm H}$ inside ITB
 - Proposition: Two stable solutions may coexist?
 - Heat flux:

$$q_{\rm H} = -n\chi \frac{\mathrm{d}T}{\mathrm{d}r} = \frac{P_{\rm H}}{4\pi^2 rR}$$

• Pressure gradient:

$$\alpha = -q^2 R \frac{\mathrm{d}\beta}{\mathrm{d}r} = nq^2 R \frac{2\mu_0}{B^2} \left(1 + \frac{1}{\eta_{\mathrm{T}}}\right) \frac{\mathrm{d}T}{\mathrm{d}r}, \quad \eta_{\mathrm{T}} = \frac{\mathrm{d}\ln T}{\mathrm{d}\ln n}$$

° Thermal diffusivity:

$$\chi_{\rm TB} = C \frac{F(s,\alpha)}{1 + G\omega_E^2} \,\alpha^{3/2} \frac{c^2}{\omega_{\rm pe}^2} \frac{v_{\rm A}}{qR}$$

• Heat flux relation can be rewritten as

 $\hat{P}_{\rm H} = \left[\hat{\chi}_{\rm TB} + \hat{\chi}_{\rm NC}\right] \alpha$

• Normalization: $P_{\rm H}$ and χ are normalized by $P_{\rm H0}$ and χ_0

$$P_{\rm H0} = 2\pi^2 \frac{r}{qR} \frac{B^2}{\mu_0} \frac{\eta_{\rm T}}{1 + \eta_{\rm T}} \chi_0, \quad \chi_0 = C \frac{c^2}{\omega_{\rm pe}^2} \frac{v_{\rm A}}{qR}$$

• Therefore

$$\hat{P}_{\rm H} = \frac{P_{\rm H}}{P_{\rm H0}}, \qquad \hat{\chi}_{\rm TB} = \frac{\chi_{\rm TB}}{\chi_0} = \frac{F(s,\alpha)}{1 + G\omega_{\rm E}^2} \,\alpha^{3/2}, \qquad \hat{\chi}_{\rm NC} = \frac{\chi_{\rm NC}}{\chi_0}$$

• We plot

$$\frac{\hat{P}_{\rm H}}{\alpha} = \hat{\chi}_{\rm TB} + \hat{\chi}_{\rm NC}$$

as a function of α for various values of \hat{P}_{H} , s and G.

- Effect of Shafranov shift $(G = 0, \hat{\chi}_{NC} = 0)$
- $s = 0.3, 0.6, 0.9, 1.2, 1.5, \hat{P}_{H0} = 0.25, 0.5, 0.75, 1.0, 1.25$

- For s > 1.2, bifurcation may occur.
- Threshold power: $\hat{P}_{\rm H0} = 1.25$

- Effect of $E \times B$ rotation shear (G' = 0.5, $\hat{\chi}_{NC} = 0$)
- Approximation: $G\omega_{\rm E}^2 \simeq G'\alpha^2$
- $s = 0.3, 0.6, 0.9, 1.2, 1.5, \hat{P}_{H0} = 0.25, 0.5, 0.75, 1.0, 1.25$

• Thresholds of both s and \hat{P}_{H0} are reduced.

- Effect of $E \times B$ rotation shear (G' = 0.5, $\hat{\chi}_{NC} = 0.2$)
- Approximation: $G\omega_{\rm E}^2 \simeq G' \alpha^2$
- $s = 0.3, 0.6, 0.9, 1.2, 1.5, \hat{P}_{H0} = 0.25, 0.5, 0.75, 1.0, 1.25$

• α after transition is finite but large.

Summary

- We have examined the possibility of bifurcation in transport barrier formation based on the CDBM transport model.
- In the high β_p mode, hard transition may occur for $s \gtrsim 1.2$.
- The effect of $E \times B$ rotation shear reduces the threshold of both sand $\hat{P}_{\rm H}$. The effect of $\hat{\chi}_{\rm NC}$ has to be taken into account to obtain finite α solution.
- In the case of low or negative magnetic shear, soft transition is dominant.
- These behaviors are consistent with simulation results.
- How to compare them with experimental observations?