第4回ITER物理R&D研究会 東大工 2001/12/27

第7回高エネルギー粒子 TCM 報告 福山淳(京大工原子核)

7th IAEA Technical Committee Meeting on Energetic Particles in Magnetic Confinement Systems Göteborg, Sweden, 2001/10/08-11

- 50 件の発表 (41 Oral, 9 Poster),約 55 人の参加
- Category: Collective mode (3)
 - ° Runaway electrons (1)
 - Diagnostics (1)
 - Ripple loss (1)
 - MHD mode (1)

Topics

• Alfvén Cascades

- 実験 (JET, JT-60)
- 高速イオンの存在によって現れる固有モード (Breizman, Borba)
- 高速イオンによって不安定化される固有モード (Fukuyama)
- Sphrical Tokamaks:
 - 非断熱性によって現れる高速イオンの輸送 (Yavorskij)
 - 圧縮性アルヴェン固有モード (NSTX)
- Fishbone induced ITB:
 - 高速イオンの再分配に伴うポロイダル回転シアの発生 (Pinches)

- 実験: (JET, JT-60)
 - 反転磁気シア配位, *n* = 1 ~ 6, *f* = 20 ~ 120 kHz
 - q_{min} の減少とともに,周波数上昇
- Interpretation of Alfvén Cascades in Tokamaks: (Breizman)
 - ○磁気シアが0となる半径の近傍に局在した EPM
 - 高速イオンの存在によって出現するモード
- Modelling of Alfvén waves in JET plasmas (Borba)
 - **CASTOR-K code:** MHD + Gyrokinetic
 - TAE 周波数ギャップの下限よりもわずかに低い周波数をもつ EPM
 - q_{min} の減少に伴う TAE 周波数ギャップ下限周波数の低下
- Analysis of Alfvén eigenmodes driven by energetic ions (Fukuyama)
 - TASK/WM code: Maxwell Eq + Kinetic Dielectric
 - 高速イオンがなくても TAE 周波数ギャップ下限近傍のモードは存在
 - 高速イオンによって不安定化

- 実験: (JET, JT-60)
 - 反転磁気シア配位, *n* = 1 ~ 6, *f* = 20 ~ 120 kHz
 - q_{min} の減少とともに,周波数上昇
- Interpretation of Alfvén Cascades in Tokamaks: (Breizman)
 - ○磁気シアが0となる半径の近傍に局在した EPM
 - 高速イオンの存在によって出現するモード
- Modelling of Alfvén waves in JET plasmas (Borba)
 - **CASTOR-K code:** MHD + Gyrokinetic
 - TAE 周波数ギャップの下限よりもわずかに低い周波数をもつ EPM
 - q_{min} の減少に伴う TAE 周波数ギャップ下限周波数の低下
- Analysis of Alfvén eigenmodes driven by energetic ions (Fukuyama)
 - TASK/WM code: Maxwell Eq + Kinetic Dielectric
 - 高速イオンがなくても TAE 周波数ギャップ下限近傍のモードは存在
 - 高速イオンによって不安定化

• Maxwell's equation for stationary wave electric field *E*

(angular frequency ω , light velocity c)

$$\nabla \times \nabla \times E = \frac{\omega^2}{c^2} \overleftrightarrow{\epsilon} \cdot E + i \,\omega \mu_0 \boldsymbol{j}_{\text{ext}}$$

 $\circ \stackrel{\leftrightarrow}{\epsilon}$: Dielectric Tensor

[Effects of finite temperature (Cyclotron damping, Landau damping) $^{\circ}$ $j_{\rm ext}$: Antenna Current

• Wave equation in non-orthogonal coordinates (radial components)

$$(\nabla \times \nabla \times E)^{1} = \frac{1}{J} \left[\frac{\partial}{\partial x^{2}} \left\{ \frac{g_{31}}{J} \left(\frac{\partial E_{3}}{\partial x^{2}} - \frac{\partial E_{2}}{\partial x^{3}} \right) + \frac{g_{32}}{J} \left(\frac{\partial E_{1}}{\partial x^{3}} - \frac{\partial E_{3}}{\partial x^{1}} \right) + \frac{g_{33}}{J} \left(\frac{\partial E_{2}}{\partial x^{1}} - \frac{\partial E_{1}}{\partial x^{2}} \right) \right\} - \frac{\partial}{\partial x^{3}} \left\{ \frac{g_{21}}{J} \left(\frac{\partial E_{3}}{\partial x^{2}} - \frac{\partial E_{2}}{\partial x^{3}} \right) + \frac{g_{22}}{J} \left(\frac{\partial E_{1}}{\partial x^{3}} - \frac{\partial E_{3}}{\partial x^{1}} \right) + \frac{g_{23}}{J} \left(\frac{\partial E_{2}}{\partial x^{1}} - \frac{\partial E_{1}}{\partial x^{2}} \right) \right\} \right]$$

$$\circ (x^{1}, x^{2}, x^{3}) = (\psi, \theta, \varphi)$$

° Similar expression for poloidal and toroidal components

Analysis of TAE in Reversed Shear Configuration

Assumed *q* profile

Plasma Parameters

Major Radius	R_0	3 m
Minor Radius	a	1 m
Wall Radius	b	1.2 m
Toroidal Magnetic Field	B_0	3 T
Center Electron Density	$n_e(0)$	$10^{20} \mathrm{m}^{-3}$
Edge Electron Density	$n_e(a)$	$10^{20} \mathrm{m}^{-3}$
Central Temperature	T(0)	3 keV
Edge Temperature	T(a)	3 keV
Ion Species		Deuterium
Central Safety Factor	q(0)	3
Edge Safety Factor	q(a)	5
Toroidal Mode Number	n	1
q-Minimum Radius	$ ho_{ m min}$	0.5

q_{min} Dependence of Alfvén Frequency Profile

*q*_{min} Dependence of Eigen Frequency and Damping Rate

Complex Eigen Frequency of Alfvén Eigenmode

Radial Mode Structure of Alfvén Eigenmode (n = 1)

Mode Structure with Energetic Particle

 $\operatorname{Re} f$ [MHz]

Modes and Eigenfunctions Driven by Energetic Ions

• $n_{\rm F0} = 2 \times 10^{17} \,\mathrm{m}^{-3}$, $T_{\rm F} = 500 \,\mathrm{keV}$, $L_{n\rm F} = 0.5 \,\mathrm{m}$, n = 1

Effect of Rotation on n = 7 mode

Im E₀

3.8

4.3

• n = 7, $m = -17 \sim -3$, f = 223 kHz: Eigen function agree with Nova-K

• Rotation velocity dependence: Stabilizing for co rotation with exp.

Influence of poloidal mode range : n = 7 mode

• Structure of Alfvén Continuum:

• n = 7, $m = -21 \sim -7$, f = 238 kHz : Destabilizing for co-rotation

球状トカマクにおける高速イオン

- Non-adiabaticity induced fast ion transport in ST (Yavorskij)
 - 高速イオン運動の非断熱性
 - ST 中の高速イオン: ρ/L_B ≥ 0.1
 - 捕捉運動とサイクロトロン運動の共鳴: $\omega_{c} = \ell \omega_{B}$
 - ○磁気モーメント µ の不変性が破れ,粒子運動が統計的
- Compressional Alfvén eigenmode instability in NSTX (Gorlenkov/Cheng)
 - 圧縮性アルヴェン固有モード
 - NSTX において NBI 入射時に観測される複数のモード: $0.8 \leq f \leq 2.5 \text{ MHz}, f \propto n^{-1}$
 - ○トーラス外側に局在する圧縮性アルヴェン固有モード

$$\omega^2 \simeq \frac{m^2 v_{\rm A}^2}{\kappa^2 r^2} \left(1 + \frac{k_{\parallel}^2 \kappa^2 r^2}{m^2} \right)$$

- 高速イオンによる励起と電子による吸収のバランス
- 異なる周波数をもつ複数のモードが存在することによる統計加熱

フィッシュボーン不安定性と内部輸送障壁形成

- Fishbone generation of sheared flows and the creation of transport barriers (Pinches)
- ASDEX-U における内部輸送障壁:

フィッシュボーン不安定性に引き続いて形成

- フィッシュボーン不安定性に伴う高速イオンの再分配
- ○乱流抑制による内部輸送障壁形成
- 必要 β_{fast} 値の評価:

 $f \sim 20 \,\text{kHz}, \quad \tau_{\text{repetition}} \sim 1 \,\text{ms} \quad \longrightarrow \quad \beta_{\text{fast}} \sim 0.36\%$