Integrated Simulation of Tokamak Plasmas by TASK Code System

A. Fukuyama, M. Honda, S. Nishina and T. Akutsu Department of Nuclear Engineering, Kyoto University, Kyoto 606-8501, Japan

Supported by Grant-in-Aid for Scientific Research of the Ministry of Education, Culture, Sports, Science and Technology, Japan and the collaboration programme of the National Institute for Fusion Science.

- Predictive Simulation of Tokamak Plasma
 - $^{\circ}$ Integrated code with modular structure
 - $^{\circ}$ Various heating and current drive schemes
 - $^{\circ}$ Portability and compactness
 - $^{\circ}$ Future extension for helical system
 - $^{\circ}$ Parallel processing using MPI library

• Status

- $^{\circ}$ Most of modules work for given spatial profiles.
- \circ Transport module is under reorganization.
- $^{\circ}$ Results of integrated simulation will be available soon.
- \circ Subjects of this presentation: Results of modules
 - Transport simulation of current hole formation: TR
 - Beam tracing analysis of ECCD: EQ+WR+DP+FP
 - Linear stability of Alfvén eigenmodes: EQ+DP+WM

 \bullet Transport Analyzing System for tokamaK

• Integrated Code

TASK/ EQ	Fixed boundary equilibrium	toroidal rotation
PL	Profile data interface	Exp. data, ITPA Profile DB
TR	Diffusive radial transport	$n_s, u_{s\phi}, T_s, B_{\theta}, E_{\phi}$
DP	Wave dispersion relation	various velocity distributions
WR	Ray and beam tracing	EC, LH
WM	3D full wave analysis	IC, AW, eigenmodes
FP	Velocity distribution analysis	3D, relativistic, bounce averaged
EX	Free boundary equilibrium	Start up, Shut down
TX	Fluid-like transport analysis	$n, \boldsymbol{u}, T, \boldsymbol{E}, \boldsymbol{B}, \text{ including SOL}$

• Output $\$ Input variables

	EQ	PL	TR	DP	WR	WM	FP
EQ		$\psi(R,Z)$					
PL	$p, j, u_{\phi}(\psi)$		metric	$n, T, u_{\parallel}, {oldsymbol B}({oldsymbol r})$		metric	metric
TR		$n,T,j,u_{\phi},\psi(ho)$					
DP					$\stackrel{\leftrightarrow}{\epsilon}$	$\stackrel{\leftrightarrow}{\epsilon}$	
WR			$P_{\rm abs}(\rho)$				$ ilde{m{E}}, ilde{m{B}}(m{r})$
WM			$P_{\rm abs}(\rho)$				$ ilde{m{E}}, ilde{m{B}}(m{r})$
FP			$P_{ m abs}, j_{ m CD}(ho)$	$f(v_{\parallel},v_{\perp},\rho)$			

- Modules with 3D configuration for helical system: WM, WR
- Modules with MPI parallelization for computer cluster: WM, FP

TASK/TR

• Diffusive Transport Simulation

• Variables:

Density n_s f	for $s = D, T, He$, Impurity
Rotation u_s f	for $s = D, T, He$, Impurity
Temperature T_s f	for $s = Electron, D, T, He, Impurity$
Energy density W_s	for $s = Alpha$, Beam ion
Neutral density n_{fs}	(fast) , n_{ss} (slow) for s = D, T
Poloidal flux Ψ	

° Diffusion equation

$^{\circ}$ Transport coefficients

Neoclassical model

Turbulent transport models (CDBM, \dots)

• Source:

Ionization

Collisional momentum and energy transfer

RF heating and current drive

Fusion reaction

CDBM Turbulence Model

Simulation of Current Hole

- Current ramp up: $I_{\rm p} = 0.5 \longrightarrow 1.0 \,\mathrm{MA}$
- Moderate heating: $P_{\rm H} = 5 \,\rm MW$
- **Current hole** is formed.
- The formation is sensitive to the edge temperature.

TASK/DP

- Various Models of Dielectric Tensor: (available, underway)
 - $^{\circ}$ Resistive MHD plasma model
 - $^{\circ}$ Cold plasma model with collision
 - $^{\circ}$ Warm plasma model with collision
 - ° Kinetic plasma model (Maxwellian)
 - ° Kinetic plasma model (Relativistic Maxwellian)
 - ° Kinetic plasma model (Numerical, Relativistic/Non-Rel.)
 - ° Gyrokinetic plasma model (Maxwellian)
 - ° Gyrokinetic plasma model (Numerical, Relativistic/Non-Rel.)

• for

- ° given $n, u_{\parallel}, T, B, \nabla_{\perp} p, \nabla_{\perp} B$
- ° given $n, u_{\parallel}, T, B, \nabla_{\perp} n, \nabla_{\perp} T, \nabla_{\perp} B, E_{\perp}$

TASK/WR

• **Ray Tracing** (Geometrical Optics)

° Wave length $\lambda~\ll~$ Characteristic scale length L of the medium

 \circ Plane wave: Beam size d is sufficiently large

— Fresnel condition: $L \ll d^2/\lambda$

 \circ Beam : Diffraction effect determines the beam size d

• Beam Tracing

- $^{\circ}$ Propagation of beam with finite size
 - Spatial evolution of beam size
- \circ References
 - G. V. Pereverzev, in *Reviews of Plasma Physics*, Vol. 19, p. 1.
 - A. G. Peeters, Phys. Plasmas ${\bf 3}$ (1996) 4386.
 - G. V. Pereverzev, Phys. Plasmas ${\bf 4}$ (1998) 3529.

- Beam size perpendicular to the beam direction: first order in δ
- **Beam shape** : Weber function Hermite polynomial: H_n)

$$\boldsymbol{E}(\boldsymbol{r}) = \operatorname{Re}\left[\sum_{mn} C_{mn}(\delta^2 \boldsymbol{r}) \boldsymbol{e} e(\delta^2 \boldsymbol{r}) H_m(\delta \xi_1) H_n(\delta \xi_2) e^{i s(\boldsymbol{r}) - \phi(\boldsymbol{r})}\right]$$

• Amplitude : C_{mn} , Polarization : ee, Phase : $s(r) + i \phi(r)$

$$s(\mathbf{r}) = s_0(\tau) + k_{\alpha}^0(\tau)[r^{\alpha} - r_0^{\alpha}(\tau)] + \frac{1}{2}s_{\alpha\beta}[r^{\alpha} - r_0^{\alpha}(\tau)][r^{\beta} - r_0^{\beta}(\tau)]$$

$$\phi(\tau) = \frac{1}{2}\phi_{\alpha\beta}[r^{\alpha} - r_0^{\alpha}(\tau)][r^{\beta} - r_0^{\beta}(\tau)]$$

 \circ Position of beam axis : \boldsymbol{r}_0 , Wave number on beam axis: \boldsymbol{k}^0

• **Curvature radius** of equi-phase surface: $R_{\alpha} = \frac{1}{\lambda s_{\alpha\alpha}}$ • **Beam radius**F $d_{\alpha} = \sqrt{\frac{2}{\phi_{\alpha\alpha}}}$

• Gaussian beam : case with m = 0, n = 0

• Solvable condition for Maxwell's equation with beam field

$$\frac{\mathrm{d}r_{0}^{\alpha}}{\mathrm{d}\tau} = \frac{\partial K}{\partial k_{\alpha}}$$

$$\frac{\mathrm{d}k_{\alpha}^{0}}{\mathrm{d}\tau} = -\frac{\partial K}{\partial r^{\alpha}}$$

$$\frac{\mathrm{d}s_{\alpha\beta}}{\mathrm{d}\tau} = -\frac{\partial^{2}K}{\partial r^{\alpha}\partial r^{\beta}} - \frac{\partial^{2}K}{\partial r^{\beta}\partial k_{\gamma}}s_{\alpha\gamma} - \frac{\partial^{2}K}{\partial r^{\alpha}\partial k_{\gamma}}s_{\beta\gamma} - \frac{\partial^{2}K}{\partial k^{\gamma}\partial k^{\delta}}s_{\alpha\gamma}s_{\beta\delta} + \frac{\partial^{2}K}{\partial k^{\gamma}\partial k^{\delta}}\phi_{\alpha\gamma}\phi_{\beta\delta}$$

$$\frac{\mathrm{d}\phi_{\alpha\beta}}{\mathrm{d}\tau} = -\left(\frac{\partial^{2}K}{\partial r^{\alpha}\partial k^{\gamma}} + \frac{\partial^{2}K}{\partial k^{\gamma}\partial k_{\delta}}s_{\alpha\delta}\right)\phi_{\beta\gamma} - \left(\frac{\partial^{2}K}{\partial r^{\beta}\partial k^{\gamma}} + \frac{\partial^{2}K}{\partial k^{\gamma}\partial k_{\delta}}s_{\beta\delta}\right)\phi_{\alpha\gamma}$$

- By integrating this set of 18 ordinary differential equations, we obtain trace of the beam axis, wave number on the beam axis, curvature of equi-phase surface, and beam size.
- Equation for the wave amplitude C_{mn}

$$\boldsymbol{\nabla} \cdot \left(\boldsymbol{v}_{\mathrm{g0}} | C_{mn} |^2 \right) = -2 \left(\gamma | C_{mn} |^2 \right)$$

Group velocity: \boldsymbol{v}_{g0} , Damping rate: $\gamma \equiv (\boldsymbol{e}^* \cdot \overleftarrow{\boldsymbol{\epsilon}}_A \cdot \boldsymbol{e})/(\partial K/\partial \omega)$

Beam Tracing in ITER-FEAT Plasma: $R_c = 2 \text{ m}, d_{ini} = 0.05 \text{ m}$

Beam Tracing in ITER-FEAT Plasma: $R_c = 2 \text{ m}, d_{ini} = 0.05 \text{ m}$

ECCD Driven Current Profile

Current Drive Efficiency (Preliminary)

• Multiple-ray tracing is underway.

TASK/WM

• Magnetic flux coordinates: (ψ, θ, φ)

 $^{\circ}$ Non-orthogonal system

• Maxwell's equation for stationary wave electric field ${m E}$

$$oldsymbol{
abla} oldsymbol{
abla} imes oldsymbol{
abla} imes oldsymbol{B} imes oldsymbol{E} = rac{\omega^2}{c^2} \stackrel{\leftrightarrow}{\epsilon} oldsymbol{\cdot} oldsymbol{E} + \mathrm{i}\,\omega\mu_0\,oldsymbol{j}_{\mathrm{ext}}$$

 $\circ \overleftarrow{\epsilon}$: Dielectric tensor with kinetic effects: $Z[(\omega - n\omega_c)/k_{\parallel}]$

• Fourier expansion in poloidal and toroidal directions

° Exact parallel wave number: $k_{\parallel}^{m,n} = (mB^{\theta} + nB^{\varphi})/B$

- Destabilization by energetic ions include in $\overleftarrow{\epsilon}$
 - $^{\circ}$ Drift kinetic equation

$$\left[\frac{\partial}{\partial t} + v_{\parallel} \nabla_{\parallel} + (\boldsymbol{v}_{\mathrm{d}} + \boldsymbol{v}_{\mathrm{E}}) \cdot \boldsymbol{\nabla} + \frac{e_{\alpha}}{m_{\alpha}} (v_{\parallel} E_{\parallel} + \boldsymbol{v}_{\mathrm{d}} \cdot \boldsymbol{E}) \frac{\partial}{\partial \varepsilon}\right] f_{\alpha} = 0$$

• **Eigenvalue problem** for complex wave frequency

• Maximize wave amplitude for finite excitation proportional to *nne*

Analysis of TAE in Reversed Shear Configuration

Eigenmode Structure

Excitation by Energetic Particles $(q_{\min} = 2.6)$

Summary

- Development of TASK code system for integrated simulation of tokamak plasmas in underway.
- New results obtained by the modules:
 - TR: Heat transport simulation using CDBM transport model reproduced the current hole formation. The obtained radial profiles are similar to the experimental ones, though the ITB formation occurs in earlier phase.
 - WR: In order to estimate the driven current profile in ITER, the beam tracing method was applied to the analysis of ECCD. In the case of toroidally oblique injection, the effect of Doppler shift seems dominant for the current width.
 - WM: In the reversed magnetic shear configuration, reversed-shear induced Alfvén eigenmode (RSAE) can be excited by energetic ions. The lower frequency mode (slightly above the lower end of frequency gap) which has a larger damping rate is more easily excited by the energetic beam.
- Near future works:

Complete the update to include toroidal rotation in TR module
Test integrated simulation code with experimental observations

• Purpose:

- $^{\circ}$ Integrated simulation of burning plasma
- $^{\circ}$ Interaction between various codes (Universities, NIFS, JAERI)
- $^{\circ}$ Consistent analysis of phenomena with different time/space scales
- Activity: (in consideration)
 - $^{\circ}$ Level 0: Development of open-source core code based on TASK
 - Level 1: Unified data interface between various codes Enhancement and extension of modules Parallel processing and grid computing
 - ° Level 2: Innovative model including different time/space scales
 - $^{\circ}$ Level 3: Interaction with direct numerical simulation

• Collaborations:

• Theory group: New approach Critical issues

• Experimental group: Experimental data handling User-oriented interface

• Computer science: New Algorithm Grid computing

 \circ ITPA: International collaboration

• Framework:

- $^{\circ}$ Voluntary work from November 2002
- $^{\circ}$ Research collaboration of NIFS

 $^{\circ}$ Proposal for Grant-in-Aid for Scientific Research