2002-11-15 44th APS DPP UP1-008 Orlando, USA

Simulation of RF Plasma Production by Adaptive FEM Code

A. Fukuyama and H. Kobayashi

Department of Nuclear Engineering, Kyoto University, Kyoto 606-8501, Japan

Supported by Grant-in-Aid for Scientific Research of the Ministry of Education, Culture, Sports, Science and Technology, Japan.

- Modeling of RF Plasma Production
 - $^{\circ}$ Self-consistent analysis of
 - Propagation and absorption of RF wave and
 - Time evolution of produced plasma
 - $^{\circ}$ Especially at the initial stage of plasma production
 - Rapid change of plasma density and temperature
- Various models with different applicable ranges
 - \circ RF field analysis:
 - Stationary wave: $e^{i\omega}$
 - Electrostatic field: $\tilde{\boldsymbol{B}} = 0$
 - Electromagnetic field: speed of light
 - \circ Plasma analysis:
 - Diffusive transport model: Collision-dominated plasma
 - Dynamic fluid model: Collisional plasma
 - Vlasov kinetic model: Week collision plasma
 - $-\operatorname{\mathbf{PIC}}$ kinetic model: Number of particles
- Quantitative comparison between the models is necessary.

• Features:

- $^{\circ}$ Based on Finite Element method with triangular elements
- $^{\circ}$ 2D (rectangular and axisymmetric) and extendable to 3D
- $^{\circ}$ Full implicit method for time evolution
- $^{\circ}$ Parallel processing with MPI (in progress)

• Modules:

\mathbf{WF}	Stationary wave propagation analysis	2D/3D	available
\mathbf{TF}	Transport analysis of plasma	2D	available
\mathbf{ES}	Electrostatic field analysis	2D	available
\mathbf{PF}	PIC simulation with triangular elements	2D	preliminary
${f EM}$ FF	Electromagnetic field analysis Fluid analysis of plasma	2D 2D	underway near future
DIV GRF	Simple mesh generator Graphics	2D 2D/3D	available available

Neutral Loop Discharge Plasma

- Neutral Loop Discharge (NLD) [T. Uchida, Jpn. J. Appl. Phys. 33 L43 (1994)]
 - $^{\circ}$ Magnetic configuration with a neutral loop of |B|=0
 - $^{\circ}$ Electron cyclotron resonance (ECR) in a cusp configuration
 - ° Suppression of fast electron generation [T. Sakoda et al., Jpn. J. Appl. Phys. 36 6981 (1997)]
 - Profile control by neutral loop radius [W. Chen et al., J. Plasma and Fusion Res. 74 258 (1998)]
- Chaos of electron motion near the neutral loop [Z. Yoshida, J. Plasma and Fusion Res. 73 757 (1997)]
 - Magnetic moment changes near |B| = 0.
 - ° Kinetic energy changes near the ECR.
 - Reduction of correlation time (increase of effective collision time)
- Previous analyses: given RF field
 - Applicable to a low density plasma ($\omega_{\rm pe}^2 \ll \omega_{\rm ce}^2$)
 - High density plasma $(\omega_{\rm pe}^2 \gg \omega_{\rm ce}^2)$?

• Wave propagation in an inhomogeneous plasma

Boundary-value problem of Maxwell's equation

- Analysis by the finite element method (FEM)
 - $^{\circ}$ Maxwell's equation for the electric field \longrightarrow spurious solution in a low density plasma

$$\boldsymbol{\nabla} \times \boldsymbol{\nabla} \times \boldsymbol{E} - \frac{\omega^2}{c^2} \stackrel{\leftrightarrow}{\epsilon} \cdot \boldsymbol{E} = \mathrm{i} \, \omega \mu_0 \boldsymbol{J}_{\mathrm{ext}}$$

 $^{\circ}$ We solve Maxwell's solutions for the vector and scalar potentials. $\mathrm{i}{\pmb E}=\mathrm{i}\,\omega{\pmb A}-{\pmb \nabla}\phi\mathrm{j}$

$$-\nabla^{2}\boldsymbol{A} - \frac{\omega^{2}}{c^{2}} \stackrel{\leftrightarrow}{\epsilon} \cdot \left(\boldsymbol{A} + \frac{\mathrm{i}}{\omega} \boldsymbol{\nabla}\phi\right) = \mu_{0} \boldsymbol{J}_{\mathrm{ext}}$$
$$-\boldsymbol{\nabla} \cdot \stackrel{\leftrightarrow}{\epsilon} \cdot \left(\boldsymbol{\nabla}\phi - \mathrm{i}\,\omega\boldsymbol{A}\right) = \frac{1}{\mathrm{i}\,\omega\epsilon_{0}} \boldsymbol{\nabla} \cdot \boldsymbol{J}_{\mathrm{ext}}$$

• Excitation by Antenna

Loop antenna, parallel antenna, waveguide

Electromagnetic Field model

- Static magnetic field : 3 loop coils (r= 0.3 m)
- **RF field** : Loop antenna (r= 0.165 m, f = 13.56 MHz)
- **Plasma** : Cylindrical plasma (r= 0.15 m, parabolic density profile)

• Low density plasma (10^{12} m^{-3}) Absorption near the ECR layer

• High density plasma $(10^{16} \,\mathrm{m}^{-3})$ Absorption near the LHR layer

Dispersion Relation

- Low density plasmai $\omega_{\rm pe}^2 < \omega_{\rm ce}^2$)
 - \circ Electron cyclotron wave
 - \circ Oblique electron plasma wave

- High density plasmai $\omega_{\rm pe}^2 > \omega_{\rm ce}^2$)
 - Helicon wave
 - Lower hybrid wave

• High density plasma:

$$\omega_{\rm pe}^2 \gg \omega_{\rm ce}^2, \qquad N_{\parallel}^2 \ll N_{\perp}^2$$

• Dispersion relation

$$(S - N_{\parallel}^2)(S - N_{\perp}^2 - N_{\parallel}^2) - D^2 = 0$$

$$S = 1 - \sum_{s} \frac{\omega_{\rm ps}^2}{\omega^2 - \omega_{\rm cs}^2}, \qquad D = \sum_{s} \frac{\omega_{\rm cs}}{\omega} \frac{\omega_{\rm ps}^2}{\omega^2 - \omega_{\rm cs}^2}$$

• Resonance condition: $N_{\perp} \to \infty$

$$S - N_{\parallel}^2 = 0 \quad \Longrightarrow \quad \omega^2 = \omega_{ce}^2 - \frac{\omega_{pe}^2}{N_{\parallel}^2 - 1}$$

• **Parallel propagation**: $N_{\perp} = 0$ (Ordinary Helicon)

$$N_{\parallel}^2 = S - D \implies \omega = \frac{|\omega_{\rm ce}|}{\omega_{\rm pe}^2} k_{\parallel}^2 c^2$$

ICP Plasma and NLD Plasma

Absorption by Helicon Wave

- In a high density plasma, helicon waves are excited on the high field side of ECR.
- The excited helicon wave is absorbed near the LHR resonance $S N_{\parallel}^2 = 0$.
- In the reegion away from ECR, the helicon wave propagates along the field line.

• Plasma model

- Diffusive transport equation (collision dominant)
- $^{\circ}$ Time evolution of density $n_s,$ temperature T_s and electrostatic potential ϕ (s = electron, ion)
- $^{\circ}$ Axisymmetric two-dimensional analysis
- \circ RF enhanced ionization, RF heating, Collisional heat and particle transport

• Numerical method

- \circ Spatial structure: Finite element method
- \circ Time evolution: Full implicit method
- At every time step, wave propagation is solved. (assuming that time evolution is much slower than the oasscillation of wave field)

• Time evolution of density n_s , temperature T_s , ES potential Φ

$$\frac{\partial}{\partial t}n_s = \boldsymbol{\nabla}\cdot\left[n_s\overset{\leftrightarrow}{\mu}_s\cdot\boldsymbol{\nabla}\Phi + \overset{\leftrightarrow}{D}_s\cdot\boldsymbol{\nabla}n_s\right] + \nu_{Is}n_s$$

$$\frac{\partial}{\partial t}\frac{3}{2}n_sT_s = \boldsymbol{\nabla}\cdot\left[\frac{5}{2}T_s\left(n_s\overset{\leftrightarrow}{\mu}_s\cdot\boldsymbol{\nabla}\Phi+\overset{\leftrightarrow}{D}_s\cdot\boldsymbol{\nabla}n_s\right)+\frac{3}{2}n_s\overset{\leftrightarrow}{\chi}_s\cdot\boldsymbol{\nabla}T_s\right]$$

$$-\frac{3}{2}\nu_{sn}n_s(T_s - T_n) - \frac{3}{2}\sum_{s'}\nu_{ss'}n_s(T_s - T_{s'}) + P_s$$

$$-\nabla^2 \Phi = \frac{1}{\epsilon_0} \sum_s Z_s e n_s$$

- $\stackrel{\leftrightarrow}{\mu}_s$: Mobility tensor
- $\stackrel{\leftrightarrow}{\chi_s}$: Heat diffusion tensor
- P_s : Heating power density
- ν_{sn} : Collision frequency with neutrals
- D_s : Partile diffusion tensor
- Z_s Charge number of species s
- ν_{Is} : Ionization frequency
- $\nu_{ss'}$: Coulomb collision frequency

Preliminary Analysis of Plasma Production

• Low density case $(n_e = 10^{12} \text{ m}^{-3})$

• Higher density case $(n_e = 10^{14} \text{ m}^{-3})$

- Why triangular mesh?
 - $^{\circ}$ Adaptive to any boundary shape
 - $^{\circ}$ Mash accumulation at any location
- However,
 - $^{\circ}$ How to find which element the particle is
 - $^{\circ}$ How to do particle shaping

NNMAX= 612 NEMAX= 1100

Very Preliminary Result

- $R = 25, \Delta = 2, \Delta t = 0.1, N_{\rm p} = 10000$
- Time evolution

Х

• Plasma oscillation can be described.

Summary

- Wave propagation and absorption in the NLD configuration was numerically studied.
- In the case of n_e lower than $10^{12} \,\mathrm{m}^{-3}$, absorption at ECR is dominant.
- When $n_e > 10^{12} \,\mathrm{m^{-3}}$, the excited helicon wave may contribute the plasma production.
- Quantitative analysis of collisionless absorption is left for future work.
- Self-consistent analysis of plasma production is ongoing.
- PIC simulation with triangular element is in very preliminary phase.

Wave Equation

• Maxwell equation for electric field ($\stackrel{\leftrightarrow}{\epsilon}$: Dielectric tensorj

$$oldsymbol{
abla} imes oldsymbol{
abla} imes oldsymbol{
abla} imes oldsymbol{B} imes oldsymbol{E} = \mathrm{i}\,\omega\mu_0oldsymbol{J}_{\mathrm{ext}}$$

 \bullet Vector potential \boldsymbol{A} and scalar potential ϕ

$$\boldsymbol{E} = \mathrm{i}\,\omega\boldsymbol{A} - \boldsymbol{\nabla}\phi$$

• Maxwell equation for potentials with Coulomb gauge: $\nabla \cdot A = 0$

$$-\nabla^{2}\boldsymbol{A} - \frac{\omega^{2}}{c^{2}} \stackrel{\leftrightarrow}{\epsilon} \cdot \left(\boldsymbol{A} + \frac{\mathrm{i}}{\omega} \boldsymbol{\nabla} \phi\right) = \mu_{0} \boldsymbol{J}_{\mathrm{ext}}$$
$$-\boldsymbol{\nabla} \cdot \stackrel{\leftrightarrow}{\epsilon} \cdot \left(\boldsymbol{\nabla} \phi - \mathrm{i} \,\omega \boldsymbol{A}\right) = \frac{1}{\mathrm{i} \,\omega \epsilon_{0}} \boldsymbol{\nabla} \cdot \boldsymbol{J}_{\mathrm{ext}}$$

Boundary conditions and Excitation

• Boundary conditions on conducting wall Tangential component of $\boldsymbol{E} = 0$

$$\boldsymbol{A}_{t}=0,\qquad \phi=0$$

• Boundary conditions on axis (cylindrical geometry: m = mode number) Finiteness of **B** and ρ

$$A_r = A_\theta = 0 \qquad \text{for } m = 0$$

$$A_r + i \, m A_\theta = A_z = \phi = 0 \qquad \text{for } m = \pm 1$$

$$A_r = A_\theta = A_z = \phi = 0 \qquad \text{for } |m| > 1$$

- Excitation by antennas (Electrostatic and electromagnetic coupling)
 - $^{\rm o}$ Loop antenna (fixed current profile)
 - ° Parallel antenna (fixed current profile)
 - Waveguide excitation (to be available)

Wave Ionization and Heating

• Interaction with RF waves

- Increase of electron kinetic energy
 - \implies Increase of collision with neutrals
 - \implies Increase of Ionization
 - \implies Increase of plasma density
- Increase of electron thermal energy
 - \implies Increase of electron temperature

• Oscillation velocity of electrons (mass m_e , charge -e) due to electric field E with frequency ω

$$\boldsymbol{v}_{\mathrm{E}} = -\frac{\mathrm{i}\,e}{m_{\mathrm{e}}\omega} \begin{pmatrix} \frac{\omega^2}{\omega^2 - \omega_{\mathrm{ce}}^2} & \frac{\mathrm{i}\,\omega\omega_{\mathrm{ce}}}{\omega^2 - \omega_{\mathrm{ce}}^2} & 0\\ -\mathrm{i}\,\omega\omega_{\mathrm{ce}}} & \frac{\omega^2}{\omega^2 - \omega_{\mathrm{ce}}^2} & 0\\ 0 & 0 & 1 \end{pmatrix} \cdot \boldsymbol{E}$$

- This oscillation increases relative velocity to neutrals and contributes to increase effective temperature in ionization.
- Estimation of necessary electric field strength
 - $^{\circ}$ Thermal velocity of electron of 1 eV: $7.3\times10^{5}\,\mathrm{m/s}$
 - $^{\rm o}$ For 13.56 MHz, $E\sim350\,{\rm V/m}$ gives comparable $\boldsymbol{v}_{\rm E\parallel}$
 - \circ Near ECR ($\omega \sim \omega_{ce}$), $\boldsymbol{v}_{E\perp}$ is strongly enhanced.

• Absorption Mechanism

• Wave-Particle Resonant Interaction: $v_{\parallel} = \frac{\omega}{k_{\parallel}}$

° Collisional Interaction

- Non-Resonant Interaction: $\frac{1}{2}\nu mv^2$
- Approximation of Resonant Interaction (ECR)

• Frequency

- $^{\circ}$ Electron Cyclotron Resonance (ECR) \implies Increase of $v_{\rm E\perp}$
- \circ Lower Hybrid Resonance (LHR) \implies Increase of $E_{\perp} \implies$ Increase of $\boldsymbol{v}_{\mathrm{E}\perp}$
- \circ Upper Hybrid Resonance (UHR) \implies Increase of $E_{\perp} \implies$ Increase of $\boldsymbol{v}_{\mathrm{E}\perp}$

 \circ Increase of $E_{\parallel} \implies$ Increase of $\boldsymbol{v}_{\mathrm{E}\parallel}$

Plasma Transport Model

• Features

- \circ Time Evolution of Density $n_s,$ Temperature T_s and Electrostatic Potential ϕ
- \circ Collisional Fluid Equation
- \circ Two-Dimensional Analysis
- \circ Ionization, Heating, Heat Transfer through Collisions

• Numerical Method (TASK/TP)

- Finite Element Method (A part of elements in WF)
- \circ Full-Implicit Time Advancing
- \circ Coupling with Wave Code

• Time evolution of density n_s , temperature T_s and ES potential ϕ

$$\frac{\partial}{\partial t}n_s = \boldsymbol{\nabla}\cdot\left[n_s\overset{\leftrightarrow}{\mu}_s\cdot\boldsymbol{\nabla}\Phi + \overset{\leftrightarrow}{D}_s\cdot\boldsymbol{\nabla}n_s\right] + \nu_{Is}n_s$$

$$\frac{\partial}{\partial t}\frac{3}{2}n_sT_s = \boldsymbol{\nabla}\cdot\left[\frac{5}{2}T_s\left(n_s\overset{\leftrightarrow}{\mu}_s\cdot\boldsymbol{\nabla}\Phi+\overset{\leftrightarrow}{D}_s\cdot\boldsymbol{\nabla}n_s\right)+\frac{3}{2}n_s\overset{\leftrightarrow}{\chi}_s\cdot\boldsymbol{\nabla}T_s\right]$$

$$-\frac{3}{2}\nu_{sn}n_s(T_s - T_n) - \frac{3}{2}\sum_{s'}\nu_{ss'}n_s(T_s - T_{s'}) + P_s$$

$$-\nabla^2 \Phi = \frac{1}{\epsilon_0} \sum_s Z_s e n_s$$

 $\stackrel{\leftrightarrow}{\mu}_s$ Mobility tensor

- $\dot{\chi}_s$ Thermal diffusion tensor
- P_s Heating power density
- ν_{sn} Collision frequency with neutrals
- $\stackrel{\leftrightarrow}{D}_s$ Particle diffusion tensor
- Z_s Charge number of speces s
- ν_{Is} Ionization frequency
- $\nu_{ss'}$ Coulomb collision frequency

• Effective temperature including electron oscillation due to wave electric field

$$\frac{3}{2}T_{\rm eff} = \frac{3}{2}T_{\rm e} + \frac{1}{2}m_{\rm e}|\boldsymbol{v}_{\rm E}|^2$$

• Ionization frequency: Analytic formula + Effective temperature

$$\nu_{\rm I} = n_{\rm n} \frac{10^{-11} \left(T_{\rm eff}/E_{\rm I}\right)^{1/2}}{E_{\rm I}^{3/2} \left(6 + T_{\rm eff}/E_{\rm I}\right)} \exp\left(-\frac{E_{\rm I}}{T_{\rm eff}}\right)$$

• Classical transport coefficients

$$\mu_{\parallel} = \frac{Z_{s}e}{m\nu} \qquad \mu_{\perp} = \frac{1}{1 + \omega_{c}^{2}/\nu^{2}} \mu_{\parallel}$$
$$D_{\parallel} = \frac{T}{m\nu} \qquad D_{\perp} = \frac{1}{1 + \omega_{c}^{2}/\nu^{2}} D_{\parallel}$$
$$\chi_{\parallel} = 3.16 \frac{T}{m\nu} \qquad \chi_{\perp} = 4.66 \frac{1}{1 + \omega_{c}^{2}/\nu^{2}} \frac{T}{m\nu}$$

• Collision frequency ν : Sum of collision with neutrals ($\nu_{\rm n} = 0.88 n_{\rm n} \sigma_{\rm n} v_{\rm T}$) and Coulomb collisions

Boundary Conditions

• Boundary condition on the wall

- Density gradient scale length ~ Mean free path (Particle flux due to density gradient: $-D\nabla n \sim v_{\rm th}n$)
- \circ Temperature: Fixed to 0.03 eV
- Potential: Fixed to 0
 Zero current
 Potential proportional to electric charge
 Fixed to Finite value
 (Insulated wall)
 (Biased wall)

• Initial condition

- \circ Density, Temperature: Flat profile
- \circ Potential: 0
- $^{\rm o}$ Neutral gas pressure $P_{\rm n}$: Flat profile, Fixed in time