2002-06-14

第4回核融合エネルギー連合講演会 大阪大学コンベンションセンター

トロイダルプラズマにおける

アルヴェン固有モードの線形安定性解析

福山 淳,阿久津 拓 京大工

- 3 次元波動伝播解析
- TAE に対するトロイダル回転の効果
- **負磁気シア配位における** RSAE
- 高速イオン励起モード
- まとめ

アルヴェン固有モードの線形安定性解析

- 電磁流体解析(理想,抵抗性)
- 運動論的効果を含めた電磁流体解析: 摂動的
 - 電磁流体解析から求めた固有関数,運動論的効果を含めた成長率
 - ° Nova-K (Cheng, Fu)
 - ° Castor-K (Borba)
- 運動論的解析(電子の熱運動,イオンのサイクロトロン運動,ドリフト運動)
 - PENN (Jaun, Alfvén Lab) **TASK/WM** (Fukuyama)
- バルーニング展開:高 n モード
 - HINST (Gorelenkov, Cheng) 2D-WKB (Vlad, Chen, Zonka)

3次元波動伝播解析コード:TASK/WM

- 平衡解析から得られた磁気面座標
- マクスウェル方程式の境界値問題

$$\boldsymbol{\nabla} imes \boldsymbol{\nabla} imes \boldsymbol{E} = rac{\omega^2}{c^2} \stackrel{\leftrightarrow}{\epsilon} \cdot \boldsymbol{E} + \mathrm{i} \, \omega \mu_0 \boldsymbol{j}_{\mathrm{ext}}$$

- 運動論的効果を含めた誘電率テンソル

 高速イオン:ドリフト運動論
- ポロイダルおよびトロイダルモード展開
 - 正確な k_{||} 評価
- 電界振幅を最大とする<mark>複素固有周波数</mark>
 - 電子密度に比例する励起

TAE に対するトロイダル回転の効果

トロイダル回転を含めたアルヴェン固有周波数

• 分散関係

$$\left(k_{||m}^{2} - \frac{(\omega - k_{||m}u)^{2}}{v_{A}^{2}}\right) \left(k_{||m+1}^{2} - \frac{(\omega - k_{||m+1}u)^{2}}{v_{A}^{2}}\right) - \epsilon^{2} \frac{(\omega - k_{||m}u)^{2}(\omega - k_{||m+1}u)^{2}}{v_{A}^{4}} = 0$$

- •磁力線方向の波数 $k_{\parallel m} = \frac{1}{R} \left(n + \frac{m}{q} \right)$
- •トロイダル効果を含まない場合のアルヴェン共鳴条件 $\omega^2 = k_{||m}^2 (u \pm v_A)^2, \qquad \omega^2 = k_{||m+1}^2 (u \pm v_A)^2$
- 周波数ギャップの現れる条件

$$k_{||m} (u - v_{A}) = k_{||m+1} (u + v_{A})$$

 ・ 周波数ギャップにおける安全係数: q_G

$$q_{\rm G} = -\frac{m+1/2}{n} - \frac{1}{2n} \frac{u}{v_{\rm A}}$$

• TAE ギャップ中心周波数:uに関して2次関数, q_G のu依存性

$$\omega_{\rm G} = \frac{v_{\rm A}}{2q_{\rm G}R} (1 - \frac{u^2}{v_{\rm A}{}^2})$$

n = 7 モードに対するトロイダル回転の効果

• $n = 7, m = -17 \sim -3, f = 223 \,\mathrm{kHz}$

モード形状は Nova-K の結果と一致

回転速度依存性:順方向回転による安定化(実験とは逆)

n = 7 モード:ポロイダルモード範囲の効果

● n = 7, m = −21 ~ −7, f = 238 kHz: 逆方向回転による安定化(実験と一致)

ρ

ρ

負磁気シア配位における TAE の解析

プラズマのパラメータ

Major Radius	R_0	$3\mathrm{m}$
Minor Radius	a	$1\mathrm{m}$
Wall Radius	b	$1.2\mathrm{m}$
Toroidal Magnetic Field	B_0	$3\mathrm{T}$
Center Electron Density	$n_e(0)$	$10^{20}{ m m}^{-3}$
Edge Electron Density	$n_e(a)$	$10^{20}{ m m}^{-3}$
Central Temperature	T(0)	$3{\rm keV}$
Edge Temperature	T(a)	$3{\rm keV}$
Ion Species		Deuterium
Central Safety Factor	q(0)	3
Edge Safety Factor	q(a)	5
Toroidal Mode Number	n	1
q-Minimum Radius	$ ho_{ m min}$	0.5

• **RSAE**: Reversed-shear-induced Alfvén Eigenmode

アルヴェン周波数の径方向分布の q_{\min} 依存性

固有周波数と減衰率の q_{\min} 依存性

RSAE に対する急峻密度勾配の効果

固有関数と減衰率

固有周波数と減衰率

固有関数

周波数ギャップより低い周波数のアルヴェン固有モード

プラズマのパラメータ

R	$3.5016 {\rm m}$
a	$0.9837 {\rm m}$
κ	.2810
δ	0.3098
b/a	1.1
B_0	3.3119 T
$I_{ m p}$	$1.6945 \mathrm{MA}$
$n_{ m e}(0)$	$0.2356 \ 10^{20} \mathrm{m}^{-3}$
$n_{ m e}(a)$	$0.05 \ 10^{20} \mathrm{m}^{-3}$
$T_{\rm e}(0)$	4.1 keV
$T_{ m e}(a)$	0.8 keV
$T_{\rm D}(0)$	3.7 keV
$T_{\rm D}(a)$	0.4 keV

アルヴェン周波数の径方向分布

アルヴェン固有モードの複素固有周波数

揺動振幅の複素周波数依存性

アルヴェン固有モードの径方向空間構造 (n = 1)

高速イオン励起を含めた場合の複素固有モード周波数

• $n_{\rm F0} = 2 \times 10^{17} \,\mathrm{m}^{-3}, T_{\rm B} = 500 \,\mathrm{keV}, L_{n\rm B} = 0.5 \,\mathrm{m}$

 $\operatorname{Re} f$ [MHz]

高速イオンによって励起されるアルヴェン固有モード

• $n_{\rm F0} = 2 \times 10^{17} \,\mathrm{m}^{-3}, T_{\rm F} = 500 \,\mathrm{keV}, L_{n\rm F} = 0.5 \,\mathrm{m}, n = 1$

モード 構造のパラメータ依存性

$$n_{\rm F0} = 0 \times 10^{17} \,\mathrm{m}^{-3}, T_{\rm B} = 0.5 \,\mathrm{MeV}$$

$$n_{\rm F0} = 1 \times 10^{17} \,\mathrm{m}^{-3}, T_{\rm B} = 0.5 \,\mathrm{MeV}$$

 $n_{\rm F0} = 3 \times 10^{17} \,\mathrm{m}^{-3}, T_{\rm B} = 0.5 \,\mathrm{MeV}$ $n_{\rm F0} = 1 \times 10^{17} \,\mathrm{m}^{-3}, T_{\rm B} = 1 \,\mathrm{MeV}$

まとめ

- ●トカマクプラズマにおけるアルヴェン固有モードの線形安定性を3次元波動伝 播解析コード(TASK/WM)を用いて解析した.
- プラズマのトロイダル回転は,主に周波数ギャップ位置とその位置での安全係数の変化を通して TAE の固有周波数に影響を与える.順方向回転による不安定化はJT-60U における実験結果と一致する.その安定化はプラズマ表面近くのアルヴェン共鳴に起因する.
- 負磁気シア配位では、単一のポロイダルモード番号をもつ RSAE が不安定になる場合がある.その固有周波数は、周波数ギャップの下限に近く、qmin の減少とともに急激に増加する.内部輸送障壁形成に伴う急峻な密度勾配は RSAE を安定化させる傾向がある.
- ・周波数ギャップより低い固有周波数をもつ高速イオン励起モードのモード構造
 を調べた
 ・異なる空間構造をもつ
 2種類のモードが存在することがわかった
 ・
- 今後の課題 高速イオン励起モードの系統的解析

○トロイダル配位におけるアルヴェン固有モードの解析

○ 粒子のドリフト運動と結合した低周波モードの運動論的解析