2002/02/04 US-Japan Workshop on RF Physics and Profile Control and Steady State Operation using RF Kyushu Univ, Chikushi Campus

Analysis of ICRF and Alfvén Waves in Toroidal Plasmas

A. Fukuyama

Department of Nuclear Engineering, Kyoto University, Kyoto 606-8501, Japan

Contents

- Full Wave Code TASK/WM
- ICRF Waves in Toroidal Helical Plasmas
- Alfvén Eigenmode driven by Energetic Ions
- Summary

• Motivations

- ° RF Heating and Current Drive (Fast wave, Alfvén wave)
- ° Low Frequency Instabilities (Alfvén eigenmodes)
- ° Diagnostics (Ion cyclotron emission)

• Features

- ° Configuration: 2D (Axi-symmetric, Linear-helical), 3D
- ° Plasma model: Cold, Hot (No FLR), FLR (Fast wave, Differential, Integral)
- ° Numerical method: Finite difference, Finite element, Mode expansion

• Various Codes

ALCYON (Cadarache), LION (Lausanne/JET), PENN (Stockholm), PICES (Oak Ridge), TASK/WM (Ours), TORIC (Garching), Bonoli (MIT)

Full Wave Code: TASK/WM

• Magnetic Flux Coordinates (Non-Orthogonal)

- ° Minor radius direction: Poloidal Magnetic Flux ψ
- $^{\circ}$ Poloidal direction: θ
- $^{\circ}$ Toroidal direction: φ
- **Co-variant expression** of *E*

$$\boldsymbol{E} = E_1 \boldsymbol{e}^1 + E_2 \boldsymbol{e}^2 + E_3 \boldsymbol{e}^3$$

where contra-variant basis

$$e^1 = \nabla \psi, \qquad e^2 = \nabla \theta, \qquad e^3 = \nabla \varphi$$

• J: Jacobian
$$J = \frac{1}{e^1 \cdot e^2 \times e^3} = \frac{1}{\nabla \psi \cdot \nabla \theta \times \nabla \varphi}$$

• g : Metric tensor $g_{ij} = e_i \cdot e_j$, where co-variant basis $e_i \equiv \partial r / \partial x_i$

• Maxwell's equation for stationary wave electric field E (angular frequency ω , light velocity cj

$$\nabla \times \nabla \times E = \frac{\omega^2}{c^2} \overleftrightarrow{\epsilon} \cdot E + i \,\omega \mu_0 \boldsymbol{j}_{\text{ext}}$$

- $\overleftarrow{\epsilon}$: Dielectric Tensor : Effects of finite temperature Cyclotron damping, Landau damping
- \circ j_{ext} : Antenna Current

0

• Wave Equation in Non-Orthogonal Coordinates (radial components)

$$(\nabla \times \nabla \times E)^{1} = \frac{1}{J} \left[\frac{\partial}{\partial x^{2}} \left\{ \frac{g_{31}}{J} \left(\frac{\partial E_{3}}{\partial x^{2}} - \frac{\partial E_{2}}{\partial x^{3}} \right) + \frac{g_{32}}{J} \left(\frac{\partial E_{1}}{\partial x^{3}} - \frac{\partial E_{3}}{\partial x^{1}} \right) + \frac{g_{33}}{J} \left(\frac{\partial E_{2}}{\partial x^{1}} - \frac{\partial E_{1}}{\partial x^{2}} \right) \right\} - \frac{\partial}{\partial x^{3}} \left\{ \frac{g_{21}}{J} \left(\frac{\partial E_{3}}{\partial x^{2}} - \frac{\partial E_{2}}{\partial x^{3}} \right) + \frac{g_{22}}{J} \left(\frac{\partial E_{1}}{\partial x^{3}} - \frac{\partial E_{3}}{\partial x^{1}} \right) + \frac{g_{23}}{J} \left(\frac{\partial E_{2}}{\partial x^{1}} - \frac{\partial E_{1}}{\partial x^{2}} \right) \right\} \right]$$
$$(x^{1}, x^{2}, x^{3}) = (\psi, \theta, \varphi)$$

° Similar expression for poloidal and toroidal components

Response of Plasmas

- Usually the dielectric tensor $\overleftarrow{\epsilon}$ is calculated in Cartesian coordinates with static magnetic field along the *z* axis.
- Local normalized orthogonal coordinates

$$\hat{\boldsymbol{e}}_{s} = \frac{\boldsymbol{\nabla}\psi}{|\boldsymbol{\nabla}\psi|}, \quad \hat{\boldsymbol{e}}_{b} = \hat{\boldsymbol{e}}_{h} \times \hat{\boldsymbol{e}}_{\psi}, \quad \hat{\boldsymbol{e}}_{h} = \frac{\boldsymbol{B}_{0}}{|\boldsymbol{B}_{0}|}$$

• Variable Transformation: μ

$$\begin{pmatrix} E_1 \\ E_2 \\ E_3 \end{pmatrix} = \stackrel{\leftrightarrow}{\mu} \cdot \begin{pmatrix} E_s \\ E_b \\ E_h \end{pmatrix}$$

$$\stackrel{\leftrightarrow}{\mu} \equiv \begin{pmatrix} \frac{1}{\sqrt{g^{11}}} & \frac{d}{\sqrt{Jg^{11}}} & c_2g_{12} + c_3g_{13} \\ 0 & c_3J\sqrt{g^{11}} & c_2g_{22} + c_3g_{23} \\ 0 & -c_2J\sqrt{g^{11}} & c_2g_{22} + c_3g_{33} \end{pmatrix}$$

$$c_2 = B^{\theta}/B, \quad c_2 = B^{\phi}/B \\ d = c_2(g_{23}g_{12} - g_{22}g_{31}) + c_3(g_{33}g_{12} - g_{32}g_{31}) \\ g^{11} = (g_{22}g_{33} - g_{23}g_{32})/J^2$$

• Dielectric Tensor in Non-Orthogonal Coordinates:

$$\overrightarrow{\epsilon} = \overrightarrow{\mu} \cdot \overrightarrow{\epsilon}_{sbh} \cdot \overrightarrow{\mu}^{-1}$$

- Fourier Expansion in Poloidal and Toroidal Directions
- Spatial variation of wave electric field, medium and the L.H.S. of Maxwell's equation

$$E(\psi, \theta, \varphi) = \sum_{mn} E_{mn}(\psi) e^{i(m\theta + n\varphi)}$$
$$G(\psi, \theta, \varphi) = \sum_{lk} G_{lk}(\psi) e^{i(l\theta + kN_p\varphi)}$$
$$I(\nabla \times \nabla \times E) = G(\psi, \theta, \varphi) E(\psi, \theta, \varphi) = \sum_{m'n'} [J(\nabla \times \nabla \times E)]_{m'n'} e^{i(m'\theta + n'\varphi)}$$

• Coupling between various modes (N_h : Rotation number of helical coil in φ)

Mode Number	Toroidal Direcition	Poloidal Direction
Wave electric field <i>E</i>	n	т
Medium G	$kN_{ m h}$	l
$J(\mathbf{\nabla} \times \mathbf{\nabla} \times \mathbf{E})$	n'	m'
Relations	$n' = n + kN_{\rm h}$	m' = m + l

Parallel Wave Number

• Dielectric tensor $\overleftarrow{\epsilon}(\psi, \theta, \varphi, k_{\parallel}^{m''n''})$ depends on parallel wave number $k_{\parallel}^{m'',n''}$ through the plasma dispersion function $Z[(\omega - N\omega_{cs})/k_{\parallel}^{m''n''}v_{Ts}]$

$$k_{\parallel}^{m'',n''} = -i\hat{\boldsymbol{e}}_{h} \cdot \boldsymbol{\nabla} = -i\hat{\boldsymbol{e}}_{h} \cdot (\boldsymbol{\nabla}\theta \frac{\partial}{\partial\theta} + \boldsymbol{\nabla}\varphi \frac{\partial}{\partial\varphi})$$

$$= -i\hat{\boldsymbol{e}}_h \cdot (\boldsymbol{e}^2 \frac{\partial}{\partial \theta} + \boldsymbol{e}^3 \frac{\partial}{\partial \varphi}) = m^{\prime\prime} \frac{B^{\theta}}{|B|} + n^{\prime\prime} \frac{B^{\varphi}}{|B|}$$

• Fourier components of electric displacement

$$(J \stackrel{\leftrightarrow}{\epsilon} \cdot E)^{i} = J \stackrel{\leftrightarrow}{g}^{-1} \cdot \stackrel{\leftrightarrow}{\mu} \cdot \stackrel{\leftrightarrow}{\epsilon}_{sbh} \cdot \stackrel{\leftrightarrow}{\mu}^{-1} \cdot E_{i}$$

$$m' \qquad \ell_{3} \qquad \ell_{2} \qquad \ell_{1} \qquad m$$

$$n' \qquad k_{3} \qquad k_{2} \qquad k_{1} \qquad n$$

therefore

$$m'' = m + \ell_1 + \frac{1}{2}\ell_2 \qquad n'' = n + k_1 + \frac{1}{2}k_2$$
$$m' = m + \ell_1 + \ell_2 + \ell_2 \qquad n' = n + k_1 + k_2 + k_3$$

• Drift kinetic equation

$$\left[\frac{\partial}{\partial t} + v_{\parallel}\nabla_{\parallel} + (\boldsymbol{v}_{\rm d} + \boldsymbol{v}_{\rm E}) \cdot \boldsymbol{\nabla} + \frac{e_{\alpha}}{m_{\alpha}}(v_{\parallel}E_{\parallel} + \boldsymbol{v}_{\rm d} \cdot \boldsymbol{E})\frac{\partial}{\partial\varepsilon}\right]f_{\alpha} = 0$$

where

$$\varepsilon = \frac{1}{2}m_{\alpha}v^{2}, \quad v_{\rm E} = \frac{\boldsymbol{E} \times \boldsymbol{B}}{B^{2}}, \quad v_{\rm d} = v_{\rm d}\sin\theta\hat{\boldsymbol{r}} + v_{\rm d}\cos\theta\hat{\boldsymbol{\theta}}, \quad v_{\rm d} = \frac{m_{\alpha}}{e_{\alpha}BR} \cdot \frac{v_{\perp}^{2}}{2 + v_{\parallel}^{2}}$$

• Anti-Hermite part of electric susceptibility tensor

$$\begin{aligned} \vec{\hat{\chi}}_{mm'} &= \begin{pmatrix} 1 & -i & 0 \\ -i & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix} P_{m-1,m-2} \delta_{m',m-2} + \begin{pmatrix} 0 & 0 & Q_{m-1,m-1} \\ 0 & 0 & -i & Q_{m-1,m-1} \\ Q_{m,m-1} & -i & Q_{m,m-1} & 0 \end{pmatrix} \delta_{m',m-1} \\ &+ \begin{pmatrix} (P_{m-1,m} + P_{m+1,m}) & i & (P_{m-1,m} - P_{m+1,m}) & 0 \\ -i & (P_{m-1,m} - P_{m+1,m}) & (P_{m-1,m} + P_{m+1,m}) & 0 \\ 0 & 0 & R_{m-1,m-1} \end{pmatrix} \delta_{m',m} \\ &+ \begin{pmatrix} 0 & 0 & Q_{m+1,m+1} \\ 0 & 0 & i & Q_{m+1,m+1} \\ Q_{m,m+1} & i & Q_{m,m+1} & 0 \end{pmatrix} \delta_{m',m+1} + \begin{pmatrix} 1 & i & 0 \\ i & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix} P_{m+1,m+2} \delta_{m',m+2} \end{aligned}$$

• In the case of Maxwellean velocity distributution

$$P_{m,m'} = i \frac{\omega_{p\alpha}^2}{2\omega^2} \left(1 - \frac{\omega_{*\alpha m'}}{\omega}\right) \frac{\rho_{\alpha}^2}{R^2} \sqrt{\pi} x_m \left(\frac{1}{2} + x_m^2 + x_m^4\right) e^{-x_m^2}$$

$$Q_{m,m'} = i \frac{\omega_{p\alpha}^2}{2\omega^2} \left(1 - \frac{\omega_{*\alpha m'}}{\omega}\right) \frac{\rho_{\alpha}}{R} \sqrt{\pi} 2x_m^2 \left(\frac{1}{2} + x_m^2\right) e^{-x_m^2}$$

$$R_{m,m'} = i \frac{\omega_{p\alpha}^2}{2\omega^2} \left(1 - \frac{\omega_{*\alpha m'}}{\omega}\right) \sqrt{\pi} 4x_m^3 e^{-x_m^2}$$

$$x_m = \omega/|k_{\parallel m}|v_{T\alpha},$$

$$\rho_{\alpha} = v_{T\alpha}/\omega_{c\alpha},$$

 $v_{T\alpha} = \sqrt{2T_{\alpha}/m_{\alpha}}$

ICRF Waves in Toroidal Helical Plasmas (Cold Plasma Model)

LHD $(B_0 = 3 \text{ T}, R_0 = 3.8 \text{ m})$ $f = 42 \text{ MHz}, n_{\phi 0} = 20, n_{e0} = 3 \times 10^{19} \text{ m}^{-3}, n_{\text{H}}/(n_{\text{He}} + n_{\text{H}}) = 0.235,$ $N_{\text{rmax}} = 100, N_{\theta \text{max}} = 16 \ (m = -7 \dots 7), N_{\phi \text{max}} = 4 \ (n = 10, 20, 30)$

Wave electric field (imaginary part of poloidal component)

Power deposition profile (minority ion)

Typical Poloidal Profile

• Power deposition profile

• Radial deposition profile

Alfvén Eigenmodes Below Gap requency

Parameters 3.5016 m R 0.9837 m a .2810 K δ 0.3098 b/a1.1 3.3119 T B_0 1.6945 MA $I_{\rm p}$ $0.2356 \ 10^{20} \text{m}^{-3}$ $n_{\rm e}(0)$ $0.05 \ 10^{20} \mathrm{m}^{-3}$ $n_{\rm e}(a)$ $T_{\rm e}(0)$ 4.1 keV $T_{\rm e}(a)$ 0.8 keV $T_{\rm D}(0)$ 3.7 keV $T_{\rm D}(a)$ 0.4 keV

Radial profile of Alfvén resonance frequency

Complex Eigen Frequency of Alfvén Eigenmode

Radial Mode Structure of Alfvén Eigenmode (n = 1)

Mode Structure with Energetic Particle

Re f [MHz]

Modes and Eigenfunctions Driven by Energetic Ions

• $n_{\rm F0} = 2 \times 10^{17} \,\mathrm{m}^{-3}$, $T_{\rm F} = 500 \,\mathrm{keV}$, $L_{n\rm F} = 0.5 \,\mathrm{m}$, n = 1

Parameter Dependence of Mode Structure

 $n_{\rm F0} = 0 \times 10^{17} \, {\rm m}^{-3}, T_{\rm B} = 0.5 \, {\rm MeV}$

 $n_{\rm F0} = 1 \times 10^{17} \,\mathrm{m}^{-3}, T_{\rm B} = 0.5 \,\mathrm{MeV}$

 $n_{\rm F0} = 3 \times 10^{17} \,\mathrm{m}^{-3}, T_{\rm B} = 0.5 \,\mathrm{MeV}$

 $n_{\rm F0} = 1 \times 10^{17} \,\mathrm{m}^{-3}, T_{\rm B} = 1 \,\mathrm{MeV}$

Summary

- We studied ICRF waves in a toroidal helical plasma and Alfvén eigenmodes in tokamak plasmas using the 3D full wave code, TASK/WM.
- Characteristics of ICRF heating in LHD was studies using the cold plasma model. Dependence on the minority ion ratio agrees with experimental observation.
- Kinetic 3D version is now working, but detailed study is not yet completed.
- The mode structure of the EPM/RTAE below the gap frequency was studied. Two types of modes can be destabilized by the energetic ions; strongly damped TAE mode and weakly damped shear Alfvén mode.

• Future work

- Kinetic analysis of ICRF heating in LHD
- Systematic analysis of EPM/RTAE destabilized by energetic ions
- Kinetic Analysis of low-frequency modes including the effect of particle orbit