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Transport Barrier in Tokamaks

• Transport Barrier:

◦ A layer of reduced transport

— ETB: Edge Transport Barrier

— ITB: Internal Transport Barrier

◦ Steep gradient of n(r) and T (r)

◦ Reduction of fluctuation amplitude

◦ Enhancement of negative Er

◦ Power threshold



ETB: Edge Transport Barrier

• Discovery of H mode (ASDEX, 1982)

• On the separatrix (plasma surface)

•When heating power exceeds a threshold

H mode

L mode

OH

Density Temperature

OH: only ohmic heating

L mode: low confinement mode with additional heating

H mode: high confinement mode with additional heating



ITB: Internal Transport Barrier

• Between center and edge

•Weak or negative magnetic shear, pellet injection, rational q, ...

Parabolic Box-shape



Physical Mechanism of ITB

• Reduction of Transport Coefficients Due to

◦Weak or negative magnetic shear
◦ Large shift of magnetic axis
◦ Large rotation velocity shear

• Positive feedback loop to enhance pressure gradient
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Mechanism of Turbulence Suppression

• E ×B rotation shear

◦ Er generation through radial force balance

Er = −uθBφ + uφBθ +
1

es

d

dr
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◦ E ×B shearing rate (Hahm and Burrel)
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◦ Criteria for suppression
ωE > γLin

•Magnetic shear s and normalized pressure gradient α

◦ Bollooning mode and toroidal ITG mode localized outside of torus

◦ Thermal diffusivity χ as a function of s− α

— Magnetic shear: s ≡ (r/q)(ddq/dr)

— Normalized pressure gradient: α ≡ − q2R(dβ/dr)

• Positive feedback of pressure gradient increase



Self-Sustained Turbulence

• Self-Sustained Turbulence
(K. Itoh et al., 1992)

◦ Turbulence sustained by the
enhancement of transport co-
efficients due to the turbu-
lence itself

– Weakly unstable in linear stage

– NL dissipation destabilizes the
mode.

– Saturation due to the balance
between NL drive and NL damp-
ing
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CDBM Transport Model

• Current-Diffusive Ballooning Mode

◦ Ballooning mode: MHD mode localized in bad curvature region

— Ideal ballooning mode (second stability)

— Resistive ballooning mode (plasma near edge)

— Current-diffusive ballooning mode (core plasma)

• Reduced MHD Equation (One fluid model including transport)

Vorticity equation
∂
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Ohm’s law
∂
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Energy equation
∂

∂t
p +

1

B0
∇φ×∇p0 · ẑ = χ∇2p

• Transport Coefficients:
µ : Ion viscosity, η : Resistivity,
λ : Current diffusivity, χ : Thermal diffusivity

• Ballooning transformation to 1D eigenvalue problem

◦Marginal stability



CDBM Turbulence

•Marginal Stability Condition (γ = 0)

χTB = F (s, α, κ, ωE1) α3/2 c2

ω2
pe
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qR

Magnetic shear s ≡ r

q

dq

dr

Pressure gradient α ≡ − q2R
dβ

dr

Magnetic curvature κ ≡ − r

R

(
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)

E ×B rotation shear ωE1 ≡ r2

svA

d

dr

E

rB

•Weak and negative magnetic shear,

Shafranov shift and

E ×B rotation shear

reduce thermal diffusivity.

s− α dependence of
F (s, α, κ, ωE1)
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Heat Transport Simulation

• Simple One-Dimensional Analysis

◦No impurity, No neutral, No sawtooth
◦ Fixed density profile: ne(r) ∝ (1− r2/a2)1/2

◦ Thermal diffusivity (adjustable parameter C = 12)

χe = CχTB + χNC,e

χi = CχTB + χNC,i

• Transport Equation
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• Standard Plasma Parameter

R = 3 m Bt = 3 T Elongation = 1.5
a = 1.2 m Ip = 3 MA ne0 = 5× 1019 m−3



Simulation of L-mode and Improved Confinement

• Zero-Dimensional Analysis with fixed F (s, α, κ) (gyro-Bohm scaling)

τE ∝ F−0.4A0.2
i I0.8

P n0.6 B0 a1.0 R1.2
0 P−0.6

• Deviation from L-mode scaling at low Ip

◦ Increase of Pin

◦ Increase of pressure gradient
−→ Increase of α

◦ Increase of bootstrap current
−→ Decrease of s

◦ Reduction of χ
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• Various improved core confinement modes have been reproduced

◦High-βp mode

◦ PEP (Pellet Enhanced Performance) mode

◦ LHEP (Lower Hybrid Enhanced Performance) mode

◦Negative Magnetic Shear mode



High βp mode (1)

• R = 3 m, a = 1.2 m, κ = 1.5, B0 = 3 T, Ip = 1 MA

• Time evolution during the first one second after heating switched on
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High βp mode (2)

• One second after heating power of PH = 20 MW was switched on

Temperater profile Current profile Safety factor
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Effect of E × B Rotation Shear

• Reduction of transport due to small s and large α: F (s, α, κ)

=⇒ Rapid increase of rotation shear: 1/[1 + G(s, α)ω2
E1]

=⇒ Transition to enhanced ITB
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Reversed Magnetic Shear Configuration

• ITB Formation by Current Ramp Up (JT-60U)



Simulation of Reversed Shear Configuration

Ip : 3 MA constant
Heating : 20 MW
H factor ' 0.95
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Evolution of Reversed Shear Configuration

Ip : 3 MA constant
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Bifurcation in the Gradient-Flux Relation

• Transition in barrier formation is soft or hard?

◦ ETB: Fast transition of Er −→ hard transition

◦ ITB: Experimental observation ?

• Analysis of ITB based on CDBM model

◦ Constraint: Constant heating power PH inside ITB

◦Heat flux:

qH = −nχ
dT

dr
=

PH

4π2rR
◦ Pressure gradient:

α = −q2R
dβ

dr
= nq2R

2µ0
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)
dT

dr
, ηT =

d ln T

d ln n

◦ Thermal diffusivity:

χTB = C
F (s, α)
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α3/2 c2

ω2
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Heat Flux Relation

• Heat flux relation can be rewritten as

P̂H = [χ̂TB + χ̂NC] α

• Normalization: PH and χ are normalized by PH0 and χ0

PH0 = 2π2 r

qR

B2

µ0
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1 + ηT
χ0, χ0 = C
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• Therefore

P̂H =
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PH0
, χ̂TB =

χTB

χ0
=

F (s, α)

1 + Gω2
E

α3/2, χ̂NC =
χNC

χ0



Condition of Bifurcation

• Effect of Shafranov shift (G = 0, χ̂NC = 0)
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• For s & 1.0, bifurcation may occur.

• Threshold power: P̂H0 = 1.25



Condition of Bifurcation

• Effect of E ×B rotation shear (G′ = 0.5, χ̂NC = 0)

• Approximation: Gω2
E ' G′α2
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• Thresholds of both s and P̂H0 are reduced.



Condition of Bifurcation

• Effect of neoclassical transport (G′ = 0.5, χ̂NC = 0.2)

• Approximation: Gω2
E ' G′α2
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• α after transition is finite but large.



Condition of Bifurcation

•Without α dependence of χ (G′ = 0.5, χ̂NC = 0.2)

• Approximation: Gω2
E ' G′α2
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•Weak dependence on α leads to lower s for hard transition.



Preliminary Experimental Observation

• ACC Sips et al., PPCF 44 (2002) A391

• s dependence of heating power to form ITB



Summary

•We have examined the possibility of bifurcation in transport
barrier formation based on the ballooning type transport model.

• In the high βp mode, hard transition may occur for s & 1.0.

• The effect of E×B rotation shear reduces the threshold of both s
and P̂H. The effect of χ̂NC has to be taken into account to obtain
finite α solution.

• In the case of low or negative magnetic shear, soft transition is
dominant.

• These behaviors are consistent with preliminary experimental
observation.

•Work in progress

◦ Formulation including, BM, ITG and Drift-Alfvén wave.
◦ Transport simulation including plasma rotation.


