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Transport Barrier in Tokamaks

® Transport Barrier:
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ETB: Edge Transport Barrier

® Discovery of H mode (ASDEX, 1982)
® On the separatrix (plasma surface)

®* When heating power exceeds a threshold
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OH: only ohmic heating
L mode: low confinement mode with additional heating

H mode: high confinement mode with additional heating



ITB: Internal Transport Barrier

® Between center and edge

® Weak or negative magnetic shear, pellet
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Physical Mechanism of ITB

® Reduction of Transport Coefficients Due to

© Weak or negative magnetic shear
© Large shift of magnetic axis
© Large rotation velocity shear

® Positive feedback loop to enhance pressure gradient
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Mechanism of Turbulence Suppression

® [/ x B rotation shear

© F,. generation through radial force balance

E, = —UQB¢ + u¢BQ + i%P

© F x B shearing rate (Hahm and Burrel)
 RBy d [ E, \ kg
“ETTR @ (RBQ) ks

© Criteria for suppression
WE > YLin
® Magnetic shear s and normalized pressure gradient «

© Bollooning mode and toroidal I'TG mode localized outside of torus

© Thermal diffusivity y as a function of s — «
— Magnetic shear: s = (r/q)(ddq/dr)
— Normalized pressure gradient: o = — ¢°R(dS/dr)

® Positive feedback of pressure gradient increase



Self-Sustained Turbulence

® Self-Sustained Turbulence
(K. Itoh et al., 1992)

© Turbulence sustained by the
enhancement of transport co-
efficients due to the turbu-
lence itself

— Weakly unstable in linear stage

— NL dissipation destabilizes the
mode.

— Saturation due to the balance
between NL drive and NL damp-

ing
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CDBM Transport Model

® Current-Diffusive Ballooning Mode

© Ballooning mode: MHD mode localized in bad curvature region
— Ideal ballooning mode (second stability)

— Resistive ballooning mode (plasma near edge)

— Current-diffusive ballooning mode (core plasma)

® Reduced MHD Equation (One fluid model including transport)
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® Transport Coefficients:
1t : Ion viscosity, 1 : Resistivity,
A : Current diffusivity, y : Thermal diffusivity

¢ Ballooning transformation to 1D eigenvalue problem

© Marginal stability



CDBM Turbulence

® Marginal Stability Condition (v = 0) s — o dependence of
F(s,a, Kk, wg1)
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Heat Transport Simulation

¢ Simple One-Dimensional Analysis

© No impurity, No neutral, No sawtooth
o Fixed density profile:  n.(r) o« (1 — r?/a?)"/?
© Thermal diffusivity (adjustable parameter C' = 12)
Xe = CXTB + XNC,e
Xi = OXTB + XNC,i
® Transport Equation
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¢ Standard Plasma Parameter
R=3m B;=3T Elongation=1.5
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Simulation of L-mode and Improved Confinement

® Zero-Dimensional Analysis with fixed F(s,a, k) (gyro-Bohm scaling)
g oc F04402 [08 ;06 B0 410 pl2 p=06
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® Deviation from L-mode scaling at low [,

© Increase of P, 030 - /,

© Increase of pressure gradient
— Increase of «

e [8]
N

© Increase of bootstrap current 0.10
0.08

— Decrease of s
0.06
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1y [MA]

® Various improved core confinement modes have been reproduced
°© High-(, mode
°c PEP (Pellet Enhanced Performance) mode

o LHEP (Lower Hybrid Enhanced Performance) mode
© Negative Magnetic Shear mode



High 8, mode (1)

*R=3m,a=12m, k=15, By=3T, [, =1MA

® Time evolution during the first one second after heating switched on
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High B, mode (2)

® One second after heating power of Py = 20 MW was switched on
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Effect of ¥ X B Rotation Shear

® Reduction of transport due to small s and large a: F(s, a, k)

— Rapid increase of rotation shear: 1/[1 + G(s, a)w%]

—> Transition to enhanced ITB

Time evolution of T,(0)
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Reversed Magnetic Shear Configuration

®* ITB Formation by Current Ramp Up (JT-60U)
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Simulation of Reversed Shear Configuration
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Evolution of Reversed Shear Configuration
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Bifurcation in the Gradient-Flux Relation

® Transition in barrier formation is soft or hard?

o E'TB: Fast transition of £, — hard transition

°© I'TB: Experimental observation ?

® Analysis of ITB based on CDBM model

© Constraint: Constant heating power Py inside ITB
© Heat flux:

dT Py
= —NY— —
i X T R
© Pressure gradient:
dg 2140 1\ dr dInT
2 2
=—qR—=n¢R— (14+— | — =
° L T ey -2 ( +77T) & T dnn
© Thermal diffusivity:
F
xtB = C (5,) 032 £ A



Heat Flux Relation

® Heat flux relation can be rewritten as
Py = IXTB + XNC]

® Normalization: Py and y are normalized by Py, and Y

r B? Nt ¢? UA
Py = 27° X0, Xo=0C—5—7%
qR po 1+ 07 wpe 1
® Therefore
- Py . ™ F(s, A XNC
py =1L = XTB (s,0) 39 e = XNC

= X = (6 2
Pro xo 1+ Guwi X0



Condition of Bifurcation

¢ Effect of Shafranov shift (G =0, xxc =0)

4 |

® For s 2 1.0, bifurcation may occur.

® Threshold power: P =1.25



Condition of Bifurcation

¢ Effect of £ x B rotation shear (G’ = 0.5, xnc =0)
® Approximation: Guwi ~ G'a?

4

® Thresholds of both s and 15H0 are reduced.



Condition of Bifurcation

¢ Effect of neoclassical transport (G’ = 0.5, ync = 0.2)

® Approximation: Guwi ~ G'a?

4 1 1 1 1 1 1 1
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® o after transition is finite but large.



Condition of Bifurcation

® Without a dependence of x (G’ = 0.5, xnc = 0.2)
® Approximation: Guwi ~ G'a?
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2.0 2.5

® Weak dependence on « leads to lower s for hard transition.



Preliminary Experimental Observation

* ACC Sips et al., PPCF 44 (2002) A391

® s dependence of heating power to form ITB
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Summary

®* We have examined the possibility of bifurcation in transport
barrier formation based on the ballooning type transport model.

® In the high 5, mode, hard transition may occur for s 2 1.0.

® The eﬁ’ect of £ x B rotation shear reduces the threshold of both s
and Py. The effect of xnc has to be taken into account to obtain
finite o solution.

® In the case of low or negative magnetic shear, soft transition is
dominant.

® These behaviors are consistent with preliminary experimental
observation.

® Work in progress

© Formulation including, BM, ITG and Drift-Alfvén wave.
© Transport simulation including plasma rotation.



