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In order to realize high performance operation of fusion reactor, development of a

reliable and robust transport model for burning plasmas is one of the key issues in fusion

research. Transport models based on the ion temperature gradient (ITG) mode turbu-

lence have recently attracted most attentions. We have proposed the current diffusive

ballooning mode (CDBM) model [1], and successfully reproduced the L-mode confine-

ment time scaling and the formation of internal transport barrier (ITB) [2,3].

Though these microscopic modes, such as ITG and CDBM, have been studied in-

dependently, it is desirable to give a unified view and clarifies the applicable range of

these models. As a first step of this approach, we introduce a set of reduced two-fluid

equations which describes both the electrostatic ITG mode and the electromagnetic bal-

looning mode including CDBM.

Starting from the full set of two-fluid equations for electrons and ions, we have derived

the reduced two-fluid equation, which is composed of six equations, the equation of

vorticity, parallel component of the equations of motion for electrons and ions, equations

of state for electrons and ions, and Amperes law.
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where Ωj is the cyclotron frequency, Λ0 represents the finite gyroradius effect, Γj is the

specific heat, κ is the magnetic curvature, j = e or i denotes electron and ion, and

other notations are standard. The equation of vorticity was obtained by combining the

continuity equation, the perpendicular component of the equations of motion, and the

Poisson equation with the assumption of ω ¿ Ωi.

In a sheared slab geometry, the reduced two-fluid equations were solved numerically

as an eigenvalue problem. The linear stability of the slab ITG mode was reproduced

including the effect of electron temperature gradient.



In a toroidal configuration, we obtain the following set of equations after the trans-

formation to the ballooning variable ξ.
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where H(ξ) ≡ κ0 + cos ξ + (sξ − α sin ξ) sin ξ and f 2(ξ) = 1 + (sξ − α sin ξ)2, m is the

poloidal mode number.

Figure 1 shows typical eigenfrequency and growth rate as a function of pressure

gradient. When the pressure gradient is small, the growth rate is close to that of the

toroidal ITG mode. With the increase of the pressure gradient, the electromagnetic

effect becomes dominant and the mode deviates from the toroidal ITG mode. This
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Figure 1 Eigenfrequency and growth

rate of DABM as a function of pressure

gradient for εn = Ln/R = 0.6/3 = 0.2,

q = 2, k⊥ρi = 0.36, s = 0.4, and

Te/Ti = 1
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Figure 2 Growth rate of DABM

as a function of the magnitude of

transport coefficients. Parameters are

ρi = 3.23 × 10−3 m, Ti0 = 1 keV,

Ln = 0.6 m, R = 3 m, r = 0.532 m,

m = 60, s = 0.4, q = 2, and

c2/(ω2
per

2) = 10−5.



mode propagates in the direction of the ion diamagnetic drift and stays unstable where

the ideal ballooning mode is unstable. Since this universal ballooning mode is related to

both the ITG branch of the drift wave and the Alfvénic ballooning mode, we call it drift

Alfvén ballooning mode (DABM).

In order to evaluate the turbulent transport coefficients, we employ the theory of

self-sustained turbulence [4]. We introduce the electron viscosity µe associated with the

current diffusivity λ, the ion viscosity µi and the thermal diffusivities, χe and χi, into

the reduced two-fluid model:
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The thermal diffusivities of electrons and ions stabilize the mode, while the ion parallel

viscosity can destabilize the mode in the case of large pressure gradient. These transport

coefficients are functions of the fluctuation amplitude. We assume that these coefficients

are proportional to one parameter, e.g. χ. Figure 2 indicates the χ dependence of the

growth rate. When χ is small, it has stabilizing effect on an ITG like mode. Above

a critical value of χ, it destabilize an electromagnetic mode, mainly through the ion

parallel viscosity.

From the condition that all modes with different poloidal mode numbers are stabi-

lized, we have evaluated the transport coefficients driven by the DABM. Figure indicates

the dependence on the magnetic shear s. Weak or negative magnetic shear reduces the

transport coefficients. This behavior is similar to that of the CDBM which corresponds

to neglect the compressibility and a part of the drift motion, but we should note that

the magnitude of χ is more than one order of magnitude larger than that of CDBM.

Since we need a multiplier of 12 in order to reproduce the experimental observation by

the CDBM model [2,3], DABM is more appropriate for this typical set of parameters.

The dependence on the pressure gradient is shown in Fig. for various values of s.

When the pressure gradient is small, χ is approximately proportional to α3/2. As α

increases, chi starts to saturates. When the pressure gradient exceeds a critical value,

however, χ starts to increase strongly with α, which may suggest the stiffness of the

profile. In the case of negative s, transition from an electrostatic branch to an electro-



0 1

10−3

10−2

10−1

100

(α=0.01)

s

χ j
, µ

j
[m2/s]

DABM
CDBM

Figure 3 Magnetic shear dependence of

the transport coefficients for DABM and

CDBM. Parameters are similar to Fig. 2.
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Figure 4 Pressure gradient dependence

of the transport coefficients of DABM for

various values of s. Parameters are similar

to Fig. 2.
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Figure 5 Contour plot of χ on the s-α plane. Parameters are similar to Fig. 2.

magnetic one, but the increase of χ is mild even in the large α region.

Finally, the s and α dependence of χ is shown in Fig. 5. We see reduction of χ in the

low and negative s region. The present analysis is not applicable in the large α region

where low-m modes become dominant and the marginal stability condition cannot be

satisfied. This constraint should be removed in future. In conclusion, the DABM model

is a promising candidate to explain the turbulent transport in tokamaks.
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