プラズマ・核融合学会 第21回年会静岡県コンベンションアーツセンター

シンポジウム「核融合プラズマシミュレーションの進展」

磁場閉じ込めプラズマ統合コード

Integrated Simulation Code for Magnetic Confinement Fusion

福山 淳 (京大工) FUKUYAMA Atsushi, Kyoto University

CONTENTS

- 核燃焼プラズマ統合シミュレーション
- 核燃焼プラズマ統合コード構想:BPSI
- トロイダルプラズマ解析コード: TASK
- 今後の課題

Burning Plasma Simulation

• Why needed?

- To predict the behavior of burning plasmas
- To develop reliable and efficient schemes to control them

• What is needed?

- Simulation describing a burning plasma:
 - Whole plasma (core & edge & diverted & wall-plasma)
 - Whole discharge

(startup & sustainment & transients events & termination)

- Reasonable accuracy (comparison with experiments)
- Reasonable computer resources (still limited)

• How can we do?

- Gradual increase of understanding and accuracy
- Organized development of simulation system

BPSI: Burning Plasma Simulation Initiative

Research Collaboration among Universities, NIFS and JAERI

Targets of BPSI

- Framework for collaboration of various plasma simulation codes
 - Common interface for data transfer and execution control
 - Standard data set for data transfer and data storage
 - Reference core code, TASK
 - Helical configuration included
- Physics Integration of phenomena with different time and space scales
 - Transport during and after a transient MHD events
 - Transport in the presence of magnetic islands
 - Core-SOL interface and ...
- Advanced technique of computer science
 - Parallel computing: PC cluster, Massively Parallel, Vector-Parallel
 - Distributed computing: GRID computing, Globus, ITBL
 - Visualization: Parallel visualization, VisiGRID

Status of BPSI

1st Stage

- Development of standard dataset and module interface
- Integrated simulation of multi-physics
- Validation of modules with experimental results
- Transport simulation in 3D helical configuration

• 2nd Stage

- Integration of existing and newly-developed modules
- Global integrated simulation (Core+Edge, Transport+RF+MHD,...)
- Validation of modules with direct numerical simulation
- Integrated simulation in 3D helical configuration

• 3rd Stage

- Integrated simulation including startup and termination
- Full integrated simulation of burning plasmas

Structure of BPSI

TASK: Core code of BPSI for ITER, JT-60, LHD, and small machines TOPICS: Transport Analysis and Predictive Simulation for JT-60

Similar Activities in US

- NTCC (National Transport Code Collaboration)
 - Transport code, Module library
- SciDAC (Scientific Discovery through Advanced Computing)
 - Plasma Microturbulence Project
 - Extended MHD Modeling
 - Wave-Particle Interaction
 - National Fusion Collaboratory
 - Computational Atomic Physics
 - Magnetic Reconnection
- Fusion Simulation Project: 2005 2019
 - A Production Component: including Integrated Plasma Simulator
 - A Research and Integration Component:
 - 3D first principles simulation, Focused integration
 - A Software Infrastructure Component:

communication, visualization, experimental database

Similar Activities in EU

- EFDA Task Force: Integrated Transport Modelling (Dec. 2003)
 - o http://www.efda-taskforce-itm.org/
- Integrated Modelling
 - Physics integration
 - Code integration
 - Discipline integration: Theorist/Modeller/Computer Scientist/Experimentalist

Projects

- The Code Platform Project (CPP)
- The Data Coordination Project (DCP)
- Five Integrated Modelling Projects (IMPs)
 - Equilibrium and linear MHD stability
 - Non-linear MHD and disruptions
 - Transport code and discharge evolution
 - Transport processes and micro-stability
 - Heating, current drive and fast particles

TASK Code

- Transport Analysing System for TokamaK
- Features
 - A Core of Integrated Modelling Code in BPSI
 - Modular Structure
 - Reference Data Interface
 - Various Heating and Current Drive Scheme
 - EC, LH, IC, AW, (NB)
 - High Portability
 - Most of Library Routines Included (except LAPACK and MPI)
 - Own Graphic Libraries (gsaf, gsgl)
 - Development using CVS (Concurrent Version System)
 - Open Source (by the end of 2004)
 - Parallel Processing using MPI Library
 - Extension to Toroidal Helical Plasmas

Modules of TASK

2D Equilibrium Fixed boundary, Toroidal rotation EQ **1D Transport** TR **Diffusive Transport, Transport models** WR 3D Geometr. Optics EC, LH: Ray tracing, Beam tracing 3D Full Wave IC, AW: Antenna excitation, Eigen mode WM 3D Fokker-Planck Relativistic, Bounce-averaged **Wave Dispersion** Local dielectric tensor, Arbitrary f(v)DP **Data Interface Data conversion, Profile database** PL LIB Libraries

Associated Libraries

GSAF 2D Graphic library for X Window and EPS 3D Graphic library using OpenGL

All developed in Kyoto U

Present Structure of TASK

Under Development

New Modules

- EX: 2D equilibrium with free boundary
- TX: Transport analysis based on flux-averaged fluid equation
- WA: Global linear stability analysis
- \circ WI: Integro-differential wave analysis (FLR, $k \cdot \nabla B \neq 0$)

Extension to 3D Helical System

- 3D Data Structure
- 3D Equilibrium: VMEC, HINT
- Wave Analysis: Already 3D
- Transport Analysis: New transport model

New Modular Structure

New Modular Structure of TASK

ECCD analysis: TASK/WR/FP/DP

Geometrical Optics: TASK/WR

- Ray Tracing Method:
 - \circ Plane wave: beam size $d \gg$ Wave length λ
 - \circ 6 Ordinary Differential Equations for r_{α} , k_{α} ,
- Beam Tracing Method
 - Analysis of wave propagation with finite beam size
 - Beam shape : Gaussian beam
 - \circ 18 Ordinary Differential Equations for r_{α} , k_{α} , $s_{\alpha\beta}$ and $\phi_{\alpha\beta}$
 - Curvature radius: $R_{\alpha} = 1/\lambda s_{\alpha\alpha}$,
 - Beam radius: $d_{\alpha} = \sqrt{2/\phi_{\alpha\alpha}}$

Fokker-Planck Analysis: TASK/FP

Fokker-Planck equation

for velocity distribution function $f(p_{\parallel}, p_{\perp}, \psi, t)$

$$\frac{\partial f}{\partial t} = E(f) + C(f) + Q(f) + L(f)$$

- \circ E(f): Acceleration term due to DC electric field
- \circ C(f): Coulomb collision term
- $\circ Q(f)$: Quasi-linear term due to wave-particle resonance
- $\circ L(f)$: Spatial diffusion term
- Bounce-averaged: Trapped particle effect, zero banana width
- Relativistic: momentum p, weakly relativistic collision term
- Nonlinear collision: momentum or energy conservation
- Three-dimensional: spatial diffusion (neoclassical, turbulent)

Wave Dispersion Analysis: TASK/DP

- Various Models of Dispersion Tensor $\overleftarrow{\epsilon}(\omega, k; r)$:
 - Resistive MHD model
 - Collisional cold plasma model
 - Collisional warm plasma model
 - Kinetic plasma model (Maxwellian, non-relativistic)
 - \circ Kinetic plasma model (Arbitrary f(v), relativistic)
 - Gyro-kinetic plasma model (Maxwellian, non-relativistic)
 - \circ Gyro-kinetic plasma model (Arbitrary f(v), non-relativistic)
- Arbitrary f(v):
 - Relativistic Maxwellian
 - Output of TASK/FP

Analysis of ECCD by TASK Code

Top View Poloidal angle 70° **Toroidal angle** 20° **R**(m) Z(m) $0.05 \, \text{m}$ **Initial beam radius** Initial beam curvature 2 m 6 7 R(m) 6 R(m) **Multi Rays** One Ray **Beam Tracing** 20 Pabs 25 Pabs 0.08 Ray/Beam Profile (E) 0.06 0.02 0.0 0.20 0.40 0.60 0.80 1.00 p 0.55 0.60 0.45 0.50 0.55 0.60 20 Pabs 25 Pabs Pabs 20 P_{abs} Profile 0.45 0.50 0.55 0.60 0.45 0.55 0.60 0.55 0.60 0.45 0.0010 0.0008 € 0.0008 j [MA/m^2] $j_{\rm CD}$ Profile 0.0006 0.0002 0.0002

Full wave analysis: TASK/WM

- magnetic surface coordinate: (ψ, θ, φ)
- Boundary-value problem of Maxwell's equation

$$\nabla \times \nabla \times E = \frac{\omega^2}{c^2} \overleftrightarrow{\epsilon} \cdot E + i \omega \mu_0 j_{\text{ext}}$$

- Kinetic dielectric tensor: $\overleftrightarrow{\epsilon}$
 - Wave-particle resonance: $Z[(\omega n\omega_c)/k_{\parallel}v_{th}]$
 - Fast ion: Drift-kinetic

$$\left[\frac{\partial}{\partial t} + v_{\parallel} \nabla_{\parallel} + (\boldsymbol{v}_{d} + \boldsymbol{v}_{E}) \cdot \boldsymbol{\nabla} + \frac{e_{\alpha}}{m_{\alpha}} (v_{\parallel} E_{\parallel} + \boldsymbol{v}_{d} \cdot \boldsymbol{E}) \frac{\partial}{\partial \varepsilon}\right] f_{\alpha} = 0$$

- Poloidal and toroidal mode expansion
 - \circ Accurate estimation of k_{\parallel}
- Eigenmode analysis: Complex eigen frequency which maximize wave amplitude for fixed excitation proportional to electron density

Diffusive Transport Analysis: TASK/TR

- Transport Equation Based on Gradient-Flux Relation
 - Multi thermal species: e.g. Electron, D, T, He
 - Density, thermal energy, (toroidal rotation)
 - \circ Two beam components: Beam ion, Energetic α
 - Density, toroidal rotation
 - Neutral: Two component (cold and hot), Diffusion equation
 - Impurity: Thermal species or fixed profile
- Transport Model
 - Neoclassical: Wilson, Hinton & Hazeltine, Sauter, NCLASS
 - Turbulent: CDBM (current diffusive ballooning mode), GLF23 (V1.61), IFS/PPPL, Weiland
- Interface to Experimental Data
 - UFILE (ITPA profile DB)

ITER Standard Operation (Preliminary)

ITER Steady State Scenario (Preliminary)

Summary

- We have started Burning Plasma Simulation Initiative in Japan as a research collaboration among universities, NIFS and JAERI.
- We are developing an integrated modeling code TASK as a reference core code of BPSI.
- Our present targets are
 - Development of standard dataset and module interface
 - Development of the core code TASK with New modular structure
 - Module validation with experimental results
 - Code collaboration between TOPICS and TASK
 - Extension to the 3D helical configuration
 - Promotion of BPSI activities to experimentalists
- We are discussing with the EU and US initiatives on the international collaboration of code exchange and benchmark test.

Background

- Experiments: Significant Progress in Diagnostics
 - High resolution in space and time
 - Electromagnetic field in plasmas
 - ITER burning plasma: more than 10 years from now
- Theory: Better Understanding in Nonlinear Physics
 - Structure formation, zonal flow, ...
- Simulation: Detailed Simulation of Individual Phenomenon
 - Exponential growth of computation resources and network speed
 - Progress in computation technique
 - Lack of methodology to describe a entire picture of plasmas

Activities of BPSI

Meetings

```
2002 Aug Preparatory discussion (NIFS)
2003 Aug 1st BPSI meeting (Kyoto U)
2003 Dec US-Japan workshop (Kyoto U)
2004 Mar 2nd BPSI meeting (Kyushu U)
2004 Aug 3rd BPSI meeting (Kyushu U)
2004 Sep US-Japan workshop (PPPL)
2005 Apr 4th BPSI meeting during (Kyoto U)
```

Support from various resources

- Grant-in-Aid from JSPS (M. Yagi, Kyushu U)
- Part of Grant-in-Aid from MEXT (S.-I. Itoh, Kyushu U)
- Research collaboration of RIAM, Kyushu U (M. Yagi, Kyushu U)
- Research collaboration of NIFS (Y. Nakamura Kyoto U)
- Research collaboration of JAERI (A. Fukuyama, Kyoto U)
- US-Japan JIFT Workshop from JSPS (A. Fukuyama, Kyoto U)

Only for meeting support at present

An Example of Standard Dataset

- Machine ID, Shot ID, Model ID
- Equilibrium Data: e.g. EFIT
- Plasma Status Data
 - \circ Plasma Fluid Data: Fluid quantities, n_s , u_s , T_s , q_s
 - \circ Plasma Kinetic Data: Momentum distribution, $f_s(r, p, t)$
 - Electromagnetic Data: Quasi-static B, j, E

Wave Data

- \circ Wave Characteristics: ω , k, Power
- \circ Electromagnetic Wave Data: E, B, Ray characteristics

Transport Data

- Particle Source and Sink: S
- \circ Momentum Source and Sink: j_{CD} , M_{ϕ}
- \circ Power Source and Sink: P_{OH} , P_{abs} , P_{rad}
- \circ Transport Coefficients: D, χ

Transport Analysis

- Level of Analysis:
 - TASK/TR: Diffusive transport equation:
 - Flux-Gradient relation
 - Conventional transport analysis
 - TASK/TX: Dynamical transport equation:
 - Flux-averaged fluid equation
 - Plasma rotation and transient phenomena
 - TASK/FP: Kinetic transport equation:
 - Bounce-averaged Fokker-Plank equation
 - Modification of momentum distribution