ITBL技術普及・利用動向調査委員会 第2回光量子・プラズマ・流体分科会 大阪科学技術センター 2004-12-11

核燃焼プラズマ統合輸送解析コード

--- TASK ---

京都大学大学院工学研究科原子核工学専攻 福山 淳

内容

核燃焼プラズマ統合シミュレーション 統合輸送解析コード TASK モジュール化,並列化,今後の課題

核燃焼プラズマの定量的解析に向けて

- ITER に向けて、自律性の高い核燃焼プラズマの 振る舞いを定量的に予測することが必要
 - プラズマ加熱の大部分が
 - α粒子加熱:密度と温度に依存
 - プラズマ電流の多くが
 - 自発電流:圧力勾配とポロイダル磁界に依存
 - プラズマ中心部で
 - α粒子生成:燃料イオン密度と温度に依存

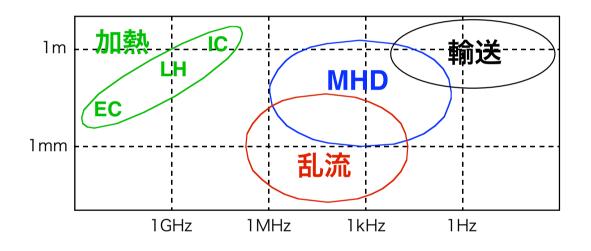
核燃焼プラズマのシミュレーション

従来の大規模シミュレーション

非線形物理現象の解明に大きな成果

MHD不安定性、乱流輸送現象、波ープラズマ相互作用等 個々の現象を詳細に解析

> 核融合実験炉の実現に向けて 炉心プラズマの予測 制御手法の開発


炉心プラズマ全体の 放電時間全体にわたる 自己完結的な時間発展シミュレーション

核燃焼プラズマ統合シミュレーションコードが必要

核燃焼プラズマ統合シミュレーション

広い時間スケール: 100GHz から 1000s

広い空間スケール: 10µm から10m

単一のシミュレーションコードでの解析は不可能 複数のコードを統合したシミュレーションが必要

核燃焼プラズマ統合コード構想

統合コード:フレームワーク

コアコードの開発・整備・公開

既存解析コードとの連携:インターフェース仕様の共通化

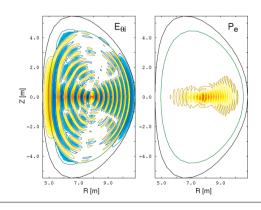
実験データベースとの連携:ITPA, JT-60, LHD, 中小型装置

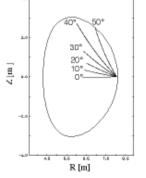
新しい物理モデル:階層型物理モデル

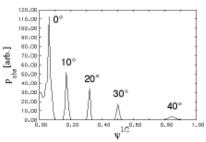
時間スケールの異なる現象の間の相互作用 異なる空間領域の間の相互作用:コア⇔周辺プラズマ

新しい計算手法:ネットワーク分散並列処理

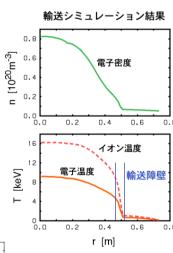
計算機クラスター間の連携:計算資源の有効利用

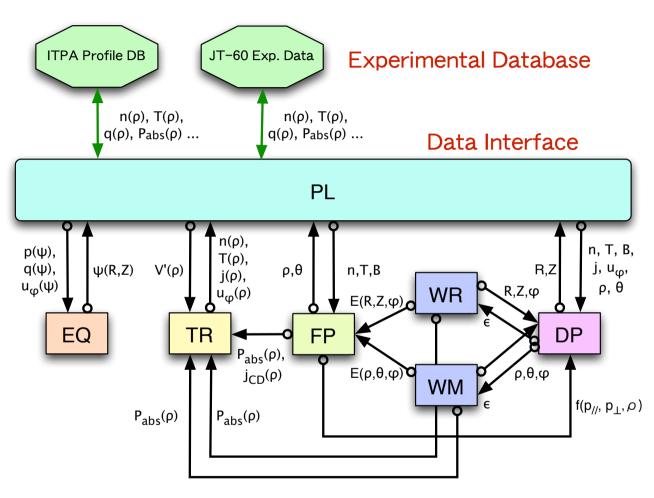

図形表示の高度化


コアコード: TASK

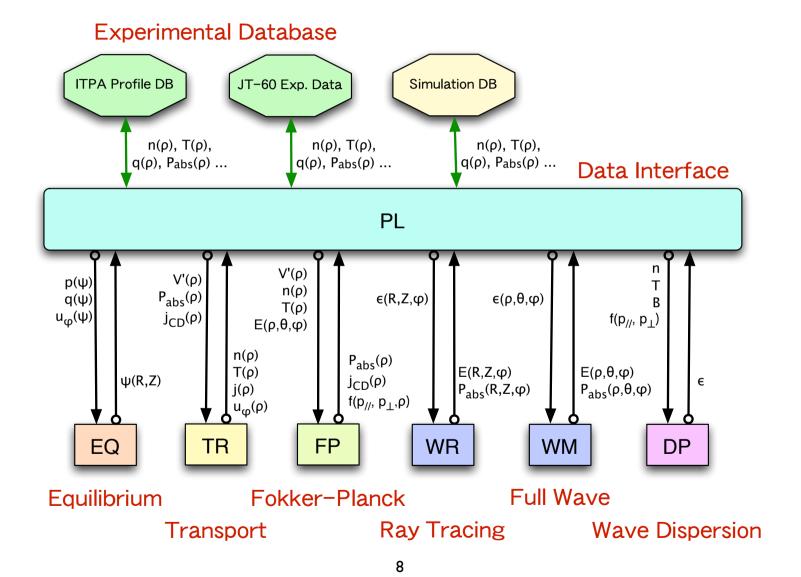

機能毎のモジュール構造


	解析	機能
EQ	2次元MHD平衡	プラズマ形状
TR	1 次元径方向輸送	密度・温度・電流分布
WR	光線追跡法	波動伝播(短波長)
WM	波動方程式	波動伝播(長波長)
FP	3次元FP方程式	粒子速度分布関数
DP	波動分散関係	波動伝播特性
PL	データインターフェース	座標変換,実験データ


FP方程式: フォッカープランク方程式



モジュール間の相互作用


Equilibrium

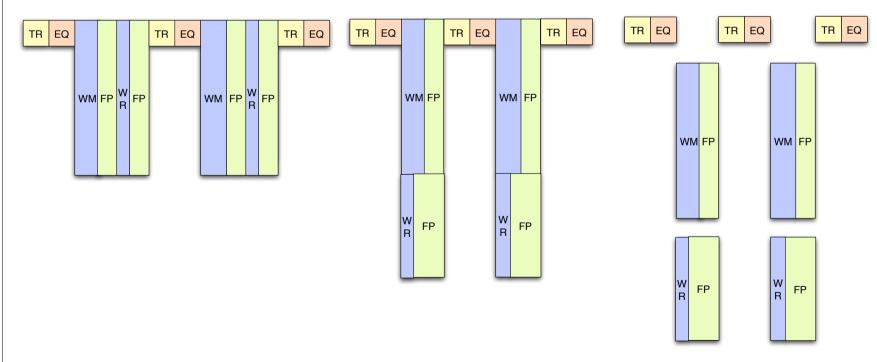
Fokker-Planck Wave Dispersion

Transport

Wave Analysis

TASK の新しいモジュール構造

実行形態


逐次型

単純並列型

多重並列型

分散並列型

データの標準化

- 各モジュールはデータベースを介してデータ交換
- 標準化されたデータ
 - 磁場配位データ(トロイダル/ポロイダル磁束)
 - プラズマ流体データ(密度,温度,速度等)
 - プラズマ運動論データ(速度分布関数)
 - 電磁界データ(電磁界、光線、波動ビーム)
 - 周辺プラズマデータ
- 用途に合わせて座標変換

今後の予定

- ITBL 計算機にコード移植済:動作確認中
- 12月末: TASK コード ソース公開
- 単純並列型による統合輸送シミュレーション
 - 実験データとの比較によるモデルの検証
 - ITER 運転シナリオの予測
- 今後の課題
 - データベースを介したデータ交換
 - 多重並列型・分散並列型による負荷分散
 - WEB ベースの遠隔操作