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In order to realize high performance operation of fusion reactor, development of a
reliable and robust transport model for burning plasmas is one of the key issues in fusion
research. Transport models based on the ion temperature gradient (ITG) mode turbu-
lence have recently attracted most attentions. We have proposed the current diffusive
ballooning mode (CDBM) model [1], and successfully reproduced the L-mode confine-
ment time scaling and the formation of internal transport barrier (ITB) [2,3]. Though
these microscopic modes, such as ITG and CDBM, have been studied independently, it

is desirable to give a unified view and clarifies the applicable range of these models.

Basic Equations: Starting from the full set of two-fluid equations for electrons
and ions, we have derived a reduced set of two-fluid equations, which is composed of six
equations, the equation of vorticity, parallel component of the equations of motion for

electrons and ions, equations of state for electrons and ions, and Ampere’s law [4]:

7 Tle eo} 8Vi¢1+ n; 2 vipil e Q Vipel
ot ;B ot QB ot

4By QB e qini GeNe
1 VB
=V (v = nevjer) = — <b X K +bx ?> (Vi + Vper) (1)
ov; 0A ]

mjnjo a]t”l + VipjL + 410 <V|¢1 + 7"1 + W*iju) =0 (2)
op; )
a—zl — igjnjowspid1 + Lipjo Vv = 0 (3)
V3iAjp = —po Y (nogjujn) (4)

J

where €2 is the cyclotron frequency, I'; is the specific heat, k is the magnetic curvature,
j = e or i denotes electron and ion, and other notations are standard. The equation of
vorticity was obtained by combining the continuity equation, perpendicular component
of the equations of motion, and the Poisson equation with the assumption of w < €.
In a toroidal configuration, we obtain the following set of equations after the transfor-
mation to the ballooning variable £ and the renormalization of the E x B nonlinearities
5], e.g. dX;/dt — —iwX; — x;V3 X, where x; is a turbulent transport coefficient
%,

proportional to |¢;|*, which may destabilize or stabilize the modes
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where H (&) = ko + cos€ + (s — asin€) sin€ and f2(€) = 1+ (s€ — asin §)?

Two Field Model: By eliminating vj; and p;; from eqgs. (5) to (8) and assuming
kifug/w? > 1 and kyvf;/w? < 1, we obtain a set of equations for two fields, ¢; and ¢1;

m2 2 m2 2 2
. W*pi f 2 mji UT f & 2
(1 + M — ) PP+ ————5 Vi
w 72 me w? 12 W2,

m uTip 1 w*pi) m Ui ( w*pe>
— 1-— - — 1-—— ) H =0 9
+ r wiR < 142X w H(&) 61 r wiR w (&) )
m2f? c me/m; Wapi 1+iX Wapi
HV e i 1— *pl)Hvz e <1_ *pl)
l r2 w2, | 1T, < w 1 T w )|
Mme/m; 1 , Wipi , w
= Sl 1 Xi—ﬁ>nv <1 X, — *"e> 10
[1+iMi|1+iXi< o w I T U w )] o 10
where the normalized transport coefficients are defined by
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and the parallel derivative V| = (By/rBy)(d/d&). This set of equations describes both
the toroidal ITG mode and the ballooning mode.

In the electrostatic limit where k% ¢?/w? — oo and ¢; — 0 while ¢?¢); is finite, egs.
(9) and (10) are combined to yield
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From this ordinary differential equation, we found that the ion parallel viscosity has a
destabilizing effect by reducing the field bending term [4]. Without nonlinear transport
terms (M; and X), eq.(11) is reduced to the equation describing the toroidal ITG mode:
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In the other limit k% ¢?/w? < 1, we obtain ¢ ~ 11 and
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In the presence of electron compressibility, the current diffusivity (electron parallel viscos-
ity) does not contribute to destabilization. In the linear case without nonlinear transport

terms, eq.(13) is reduced to the kinetic ballooning mode equation:
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Analytic Formula of Transport Coefficients: In the strong ballooning limit
where the eigenmode localizes around £ ~ 0, eqs. (11) and (13) are approximated by the
Weber equation. From the eigenvalue condition, we can derive the dispersion relation
of the mode. In order to obtain an analytic expression of the transport coefficients, we
consider the simplest case, an electrostatic low-frequency limit. With the low frequency
marginal stability condition, w = iy = 0, eq.(11) is reduced to
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In the strong ballooning limit (£ < 1), the eigenvalue problem of the Weber equation

can be easily solved. The lowest eigenvalue condition leads to
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The RHS of eq.(16) has an approximate maximum around N? ~ (1 + x)/2. In order to

stabilize all modes with respect to m, the transport coefficients ought to be
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where

This model is slightly different from the CDBM model; (1) dependence on pressure
gradient: xrp o aj, while xcpem X (e + @;)%2, (2) dependence on plasma parameters:

XTB/XcpBM X (vTi/vA)(Mi/me), (3) s — a dependence: f(s, a, k) vs. g(s,a, k) .
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Figure 1 Typical radial profiles obtained by the transport simulation using eq.(18) in a

reversed magnetic shear configuration.

Preliminary Transport Simulation of ITB Formation: Preliminary results of
transport simulations by TASK /TR using eq.(18) are shown in Fig.1. Device Parameters
are Rg =3m, a=12m, kK = 1.5, By = 3T. We assume the thermal diffusivity of the
form, x;i = xe = xnc + 0.3y and the adjustable parameter 0.3 was chosen so that
the L-mode energy confinement time scaling law be reproduced for I, = 3 MA and the
heating power Py = 30 MW (Py. = Py;). Figure 1 depicts typical radial profiles for
the reversed magnetic shear configuration with current ramp up (1 — 3MA in 1s) and
Py = 30 MW. Relatively weak ITB is formed between r/a = 0.5 and 0.8 where s < 0,

and I'TB formation requires more heating power than the case with CDBM model.

Summary: We have introduced a two-field model to describe both the toroidal ITG
mode and the kinetic ballooning mode. Based on the theory of self-sustained turbulence
[5], we obtained an approximate formula of the transport coefficients from the marginal
stability condition of the electrostatic mode. This mode is destabilized by the ion parallel
viscosity and stabilized by the electron thermal diffusivity. Preliminary result of trans-
port simulation suggests that the internal transport barrier formation is more difficult
for this model than the previous CDBM model. Improvement of the model including

the finite mode frequency and the electromagnetic case is underway.
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