19th ICNSP and 7th APPTC Nara-Ken New Public Hall, Nara 2005/07/13 P2-44

Integrated Tokamak Plasma Simulation with TASK Code

FUKUYAMA Atsushi, HONDA Mitsuru and YAMAHANA Yusuke

Department of Nuclear Engineering, Kyoto University

Contents

- Background
- TASK: Transport Analysing System for tokamaK
- Wave analysis by TASK Code
- Self-Consistent RF Simulation
- Summary

Background

- Experiments: Significant Progress in Diagnostics
 - High resolution in space and time
 - Electromagnetic field in plasmas
- Theory: Better Understanding of Nonlinear Physics
 - Structure formation, zonal flow, . . .
- Simulation: Detailed Simulation of Individual Phenomenon
 - Exponential growth of computation resources and network speed
 - Progress in computation science
 - Lack of methodology to describe multi-scale physics
- Target of TASK code development
 - Framework of code integration
 - Standard dataset for data exchange
 - Common interface for data transfer and execution control

TASK Code

- Transport Analysing System for TokamaK
- Features
 - A Core of Integrated Modeling Code in BPSI
 - Modular Structure
 - Reference Data Interface
 - Various Heating and Current Drive Scheme
 - EC, LH, IC, AW, (NB)
 - High Portability
 - Most of Library Routines Included (except LAPACK and MPI)
 - Own Graphic Libraries (gsaf, gsgl)
 - Development using CVS (Concurrent Version System)
 - Open Source (by the end of 2004)
 - Parallel Processing using MPI Library
 - Extension to Toroidal Helical Plasmas

Modules of TASK

EQ2D EquilibriumFixed boundary, Toroidal rotationTR1D TransportDiffusive Transport, Transport modelsWR3D Geometr. OpticsEC, LH: Ray tracing, Beam tracingWM3D Full WaveIC, AW: Antenna excitation, Eigen modeFP3D Fokker-PlanckRelativistic, Bounce-averagedDPWave DispersionLocal dielectric tensor, Arbitrary f(v)PLData InterfaceData conversion, Profile databaseLIBLibraries

Associated Libraries

GSAF 2D Graphic library for X Window and EPSGSGL 3D Graphic library using OpenGL

All developed in Kyoto U

Present Structure of TASK

Under Development

New Modules

- EX: 2D equilibrium with free boundary
- TX: Transport analysis based on flux-averaged fluid equation
- WA: Global linear stability analysis
- \circ WI: Integro-differential wave analysis (FLR, $\mathbf{k} \cdot \nabla \mathbf{B} \neq 0$)

Extension to 3D Helical System

- 3D Data Structure
- 3D Equilibrium: VMEC, HINT
- Wave Analysis: Already 3D
- Transport Analysis: New transport model

New Modular Structure

New Modular Structure of TASK

Wave Dispersion Analysis: TASK/DP

- Various Models of Dielectric Tensor $\overleftarrow{\epsilon}(\omega, k; r)$:
 - Resistive MHD model
 - Collisional cold plasma model
 - Collisional warm plasma model
 - Kinetic plasma model (Maxwellian, non-relativistic)
 - \circ Kinetic plasma model (Arbitrary f(v), relativistic)
 - Gyro-kinetic plasma model (Maxwellian)
- Numerical Integration in momentum space: Arbitrary f(v)
 - Relativistic Maxwellian
 - Output of TASK/FP: Fokker-Planck code

Geometrical Optics: TASK/WR

- Ray Tracing (Geometrical Optics)
 - \circ Wave length $\lambda \ll$ Characteristic scale length L of the medium
 - Propagation of plane wave
 - Spatial evolution of beam position and wave number
 - Assumption of plane wave:
 - Beam size d is sufficiently large: Fresnel condition: $L \ll d^2/\lambda$
 - Beam: Diffraction effect determines the beam size d

Beam Tracing

- Propagation of beam with finite size
 - Spatial evolution of beam size and curvature radius

Fokker-Planck Analysis: TASK/FP

• Fokker-Planck equation for velocity distribution function $f(p_{||}, p_{\perp}, \psi, t)$

$$\frac{\partial f}{\partial t} = E(f) + C(f) + Q(f) + L(f)$$

- \circ E(f): Acceleration term due to DC electric field
- \circ C(f): Coulomb collision term
- $\circ Q(f)$: Quasi-linear term due to wave-particle resonance
- \circ *L*(*f*): Spatial diffusion term
- Bounce-averaged: Trapped particle effect, zero banana width
- **Relativistic**: momentum **p**, weakly relativistic collision term
- Nonlinear collision: momentum or energy conservation
- Three-dimensional: spatial diffusion (neoclassical, turbulent)

Analysis of ECCD by TASK Code

Top View Poloidal angle 70° 20° Toroidal angle 0 (m) Initial beam radius $0.05\,\mathrm{m}$ Initial beam curvature $2 \, \mathrm{m}$ 6 7 R(m) One Ray **Multi Rays Beam Tracing** 20 Pabs 25 Pabs Ray/Beam Profile 15

0.40 0.45

20 Pabs P_{abs} Profile 0.45

0.55 0.60 0.0008

0.50 0.55 0.60 p

 $j_{\rm CD}$ Profile

Full wave analysis: TASK/WM

- magnetic surface coordinate: (ψ, θ, φ)
- Boundary-value problem of Maxwell's equation

$$\nabla \times \nabla \times E = \frac{\omega^2}{c^2} \overleftrightarrow{\epsilon} \cdot E + i \omega \mu_0 j_{\text{ext}}$$

- Kinetic **dielectric tensor**: $\overleftrightarrow{\epsilon}$
 - \circ Wave-particle resonance: $Z[(\omega n\omega_c)/k_{||}v_{th}]$
 - ∘ Fast ion: Drift-kinetic

$$\left[\frac{\partial}{\partial t} + v_{\parallel} \nabla_{\parallel} + (\boldsymbol{v}_{d} + \boldsymbol{v}_{E}) \cdot \nabla + \frac{e_{\alpha}}{m_{\alpha}} (v_{\parallel} E_{\parallel} + \boldsymbol{v}_{d} \cdot \boldsymbol{E}) \frac{\partial}{\partial \varepsilon}\right] f_{\alpha} = 0$$

- Poloidal and toroidal mode expansion
 - \circ Accurate estimation of $k_{||}$
- Eigenmode analysis: Complex eigen frequency which maximize wave amplitude for fixed excitation proportional to electron density

Full Wave Analysis of ECH in Small-Size ST (1)

- Small-size spherical tokamak: LATE (Kyoto University)
 - T. Maekawa et al., Proc. 20th IAEA Fusion Energy Conf.,
 IAEA-CN-116/EX/P4-27 (Vilamoura, Portuga, 2004)
 - $\circ R = 0.22 \,\mathrm{m}, \, a = 0.16 \,\mathrm{m}, \, B_0 = 0.0552 \,\mathrm{T}, \, I_p = 6.25 \,\mathrm{kA}, \, \kappa = 1.5$

Poloidal Flux Current Density Number Density

Full Wave Analysis of ECH in Small-Size ST (2)

Full Wave Analysis of ECH in Small-Size ST (3)

• Standard density: $10^{17} \, \mathrm{m}^{-3}$: Extra-ordinary wave excitation

Full Wave Analysis of ECH in Small-Size ST (4)

• High density: $10^{18} \, \mathrm{m}^{-3}$: Extra-ordinary wave excitation

Self-consistent Full Wave Analysis

Summary of Self-Consistent Wave Analysis

- Deviation of velocity distribution from Maxwellian may strongly affect
 - Power absorption of ICRF waves in the presence of energetic ions
 - Current drive efficiency of LHCD
 - NTM controllability of ECCD
- Systematic analyses including the modification of velocity distribution by TASK code is under way.
- Quantitative analysis will require integro-differential analysis including FLR effects.

Summary (1)

- We are developing TASK code as a reference core code for burning plasma simulation based on transport analysis.
- The TASK code is composed of modules: equilibrium, transport, wave analysis, velocity space analysis, and data interface.
- Ray tracing analysis using TASK/WR/DP/FP was applied to ECCD on ITER and Full wave analysis using TASK/EQ/WM was applied to ECH on a small-size spherical tokamak.
- Self-consistent analysis of RF heating and current drive including the modification of velocity distribution function is still under development.

Summary (2)

To Dos

- Open source: Removing proprietary subroutines
- Improvement of modules: Fully modular structure
- Standard data interface with other simulation code
- Systematic comparison with experimental data
- Development of new modules: WA, TX, WI, EQX