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The Way of Simulation

* Neoclassical Transport Models: NCLASS
¢ Turbulent Transport Models: CDBM, GLF23, Weiland

® Solving thermal transport equations with fixed density profile using stationary
experimental profiles from ITPA profile database.

°©1D:R, a, I, B;, k, ¢,
o 2D: Te,is ne,bulk,imps Zeffs q, j! Qheatings SNB,walls VI‘OU MetriCS (Geometric quantities)
* Particle diffusivity is included through a particle flux calculated from S g wai-

¢ Calculating the core region of p < 0.9 excluding the effect of the edge, p normal-
ized radius.

¢ Diagonal turbulent transport coefficient is set to be zero if it becomes negative.

e Additional conditions:

o CDBM: The effect of E x B shearing stabilization is not included.
wg1 and k. are assumed to be zero in the formula of F.

© GLF23: Toroidal rotation velocity (Vi) is provided from exp. data.

© Neoclassical heat convection and conduction are considered.



Conditions for Comparison

¢ Initial temperature profiles and boundary conditions at p = 0.9 during the
computation are given by exp. data.

® A current density profile is obtained from the database if available, otherwise it is
produced using a safety factor profile.

e Comparison of resulting 7. ; profiles with experimental data in each discharge.
©o Compared at a fully relaxed time (typically 0.5 s).

* Choosing discharges based on “ITER Physics Basis: Chapter 2° [8.4 Results
of one dimensional modelling tests]”

® 55 discharges composed of 38 L-mode, 14 H-mode with small ELMs and 3
H-mode with giant ELMs discharges

¢ Six figures of merit in the following were calculated.

31999 Nucl. Fusion 39 2175-2249



Definition of Figures of Merit

* Mean and mean square deviations of the incremental stored energy

1nc

RN ] & nc
N

exp,i

0.9

where W™ = > [ (n(0)T.(p) + o) T@IV'dp. T(0) = T(0) ~ T(0.9)
0

N: the number of discharges

* Mean offset and mean standard deviation of the temperature for s = ¢, 1

N | M Tsims - Tex S |
MOFF, = %Z 2p Wsins(p) ps(P) , 0.2 <p <0.9)
T MY T
1 v ZM[Tsim s(p) - Texp s(p)]2
MSTD, = — & : : , 0.2 <p <0.9)
N Z J > Texps0)

M: the number of radial meshes



Elongation Effect for CDBM model

® From the figures of “Dependence on Devices”, it is found that the predictions by
the CDBM model are generally overestimated for TFTR and underestimated
for others; this behavior would be attributed to the elongation effect.

® The original CDBM model was developed on the assumption of a circular cross
section plasma.

® We therefore include the dependence on the elongation effect in the formula
of F along with the reference* as follows:

2612\
F o« :
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® This dependence clearly tends to decrease F and thus suppress the transport
when the elongation « is above unity (typically 0.65 when k = 1.5).

Results

® Large negative deviations for DIll-D H-mode shots are to some extent im-
proved, but the predictions for some discharges (i.e. DIll-D L-mode and
JET HSELM) are overestimated more than needs.

® On the whole, oy is improved from 23.5% to 20.8%.

*Yagi M et al 1997 J. Phys. Soc. Japan 66 379



CDBM Transport Model: CDBMO05

®* Thermal Diffusivity (Marginal: v = 0)
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* Weak and negative magnetic shear,
Shafranov shift, elongation,
and E x B rotation shear

reduce thermal diffusivity.
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Deviation of Stored Energy (CDBM with elongation)
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Comparison of the five transport models with respect to ow

® Comparing the five transport models with respect to ow in each operation mode
and each device.

* Obviously the best result is obtained by the CDBM model with the elonga-
tion effect (CDBM «) in 55 discharges.

HGELM --.
HSELM --.
L-mode ---

CDBM «
CDBM «
CDBM

DIlI-D ... Weiland
JET ... CDBM «
JT-60U --- GLF23
TFTR --- CDBM

® Some shots on JET HGELM and TFTR L-mode impede total performance for the
Weiland model, but the results for other shots are comparable to other models’.
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ITER Simulations

¢ Using the CDBM and modified CDBM (CDBMO05) models

© Both models can reproduce temperature profiles for L-mode and H-mode dis-
charges.

© The prediction of high performance plasmas is anticipated with the CDBMO05
model rather than the CDBM model.

¢ Using simple heating and current drive models

© Power deposition profile is assumed.
o Approximate analytic formula is assumed as a current drive efficiency.

¢ Searching parameters predicting ITER operation scenarios

© Strong self-regulation of the plasma and nonlinearity of the transport model
make it more difficult to predict the confinement performance.

® |n this simulation

© Density profiles are fixed as H-mode like profiles.
© TASK/TR is coupled with the 2-D equilibrium code, TASK/EQ.
° |t solves the time evolution of the thermal transport and the magnetic diffusion.



High Q Operational Scenario

® Large plasma current: I, = 15 MA, On-axis heating: Png = 40 MW

® Positive shear profile, Relatively large fou
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Quasi-Steady State Operational Scenario

*[,=6—>9MAfor 10s, Negative shear profile, Iog ~0
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Dynamical Transport Equation

* Transport Simulation including Core and SOL Plasmas

° Role of Separatrix

— Closed magnetic surface <= Open magnetic field line
— Difference of dominant transport process

© Radial Electric Field
© Poloidal rotation, Toroidal rotation
o Atomic Processes

¢ 1D Transport code (TASK/TX) Fukuyama et al. PPCF (1994)

°© Two fluid equation for electrons and ions
— Flux surface averaged
— Coupled with Maxwell equation
— Neutral diffusion equation
° Neoclassical transport
° Turbulent transport
— Current diffusive ballooning mode
— Ambipolar diffusion through poloidal momentum transfer
— Thermal diffusivity, Perpendicular viscosity



Model Equation (1)

* Fluid equations (electrons and ions)
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Neoclassical Transport Model

* Neoclassical transport

° Viscosity force arises when plasma rotates in the poloidal direction.
© Banana-Plateau regime

k

Vrs ¥
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* This poloidal viscosity force induces

© Neoclassical radial diffusion
© Neoclassical resistivity

© Bootstrap current

o Ware pinch



Turbulent Transport Model

® Turbulent Diffusion

© Poloidal momentum exchange between electron and ion
through the turbulent electric field

o Ambipolar flux (electron flux = ion flux)

W_ \%%
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* Perpendicular viscosity
© Non-ambipolar flux (electron flux # ion flux):  u, = constant x D
e Diffusion coefficient (proportional to |E|?)

© Current-diffusive ballooning mode turbulence model



Model of Scrape-Off Layer Plasma

¢ Particle, momentum and heat losses along the field line
© Decay time

0 0 <r<a)
VI, = CS
2rnrR{1 + log[1 + 0.05/(r — a)]}

(a<r<b)

° Electron source term
Se = no{OionV e — VL(Me — Ne div)
* Recycling from divertor
© Recycling rate: yp = 0.8

© Neutral source

Y0 1 Py
SO — Z VL(ne - ne,div) - Z n0<0-ionv>ne + E_b

¢ Gas puff from wall



Simulation of plasma rotation and radial electric field

¢ JFT-2M parameter: NBI co-injection — counter-injection
¢ Toroidal rotation = Negative £, — Density peaking
e TASK/TX: Particle Diffusivity: 0.3 m?/s, lon viscosity: 10 m?/s
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Comparison with JFT-2M Experiment

¢ JFT-2M Experiment: Ida et al.: Phys. Rev. Lett. 68 (1992) 182

¢ Good agreement with experimental observation
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Summary

* The CDBMO05 transport model including the effect of elongation has shown
better agreement with the L and H mode data in the ITPA profile database
than the previous CDBM model and other models.

* Preliminary results of the 1-1/2D thermal transport simulation of ITER plas-
mas with the CDBMO05 model predicts desired performance.

¢ Consistent analysis of the toroidal momentum input and particle transport
was carried out with the dynamical transport equation which keeps the ion
inertia terms and the radial electric field.

® To-Do List

o Simulation of ITB formation using the ITB profile database

© More consistent simulation of ITER plasma (particle transport, heating
and current drive, radiation, impurities)

° Improvement of turbulent viscosity model and flux-surface average of
the dynamical transport equations



Configuration for High Q Operational Scenario

®*R=62m

®*q=20m

® x=1.7

®*5=0

®By=57T

[, =15 MA

® nepTHe = 1.0,0.45,0.45,0.05 m™ on-axis
¢ NBI

°© Position of deposition: r = 0 m

o Width of deposition profile: rw = 1.0 m
© Energy of NB particles: E = 1.0 keV

© Tangential radius: rr = 6.2 m

o Current drive efficiency: 1.0

°© Total power: Png = 40 MW
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Configuration for Quasi-Steady State Operational Scenario

®*R=6.34m

®aq=1.859m
® k= 1.857 2.0t
®§=0.434

*B,=53T

/[, =6 MA

® neprhe = 0.724,0.326,0.326,0.036 m™ on-axis
® NBI: same condition except Png = 35 or 15 MW
* | HRF

° Position of deposition: » = 1.0 m

o Width of deposition profile: rw = 0.8 m
© Tangential radius: rr = 6.2 m

o Parallel refractive index: N = 2.0

°© Total power: Png = 30 or 23 MW
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