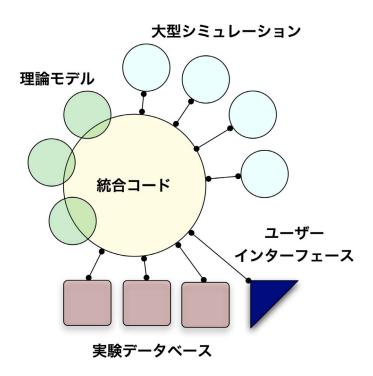
2006/03/06

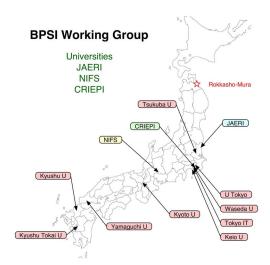
核融合フォーラム 物理クラスター合同会合 「燃焼プラズマのモデリング 京都テルサ


TASKコードによる統合モデリング

福山 淳 (京大工)

- BPSI
- TASK コードの現状
- ITPA に向けた解析
- 中小型装置の解析
- 今後の課題

BPSI: 核燃焼プラズマ統合コード構想


● 核燃焼プラズマ解析コードの枠組み

- 既存の解析コードの結合
- 理論モデルの迅速な導入
- 経験的モデルの容易な導入
- 大規模シミュレーションとの連携
- 実験データベースとの比較による検証

- 計算資源利用の効率化
- 全国的な研究協力の組織化
 - 科研・基盤 B , 共同研究: 九大応力研, 核融合研, 原子力機構等

BPSI: 核燃焼プラズマ統合コード構想

統合コード:フレームワーク

コアコードの開発・整備・公開 既存解析コードとの連携:インターフェース仕様の共通化 実験データベースとの連携:ITPA, JT-60, LHD, 中小型装置

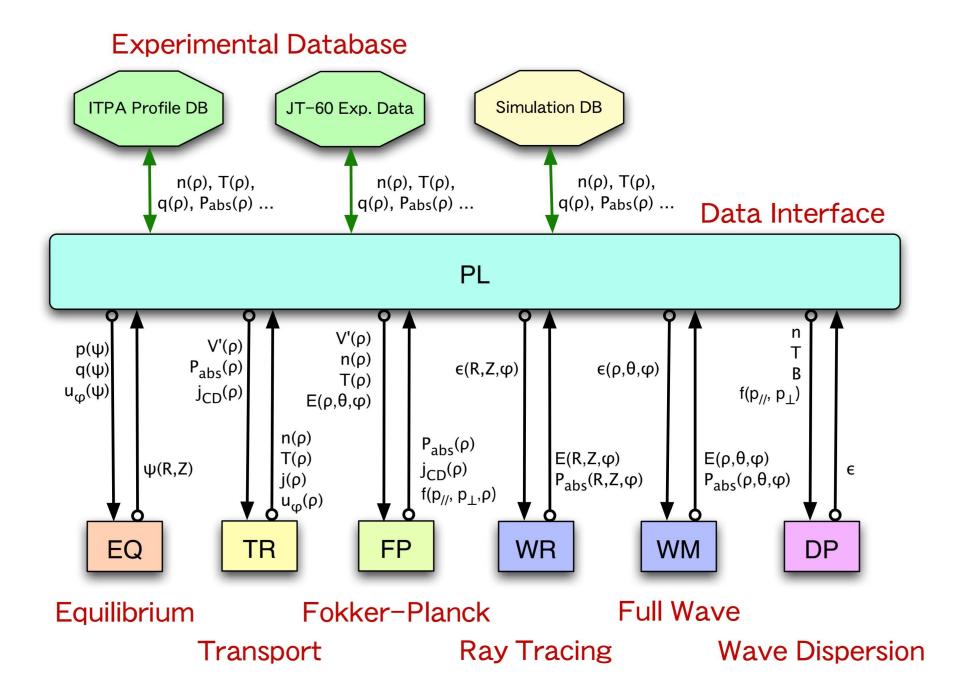
新しい物理モデル:階層型物理モデル

時間スケールの異なる現象の間の相互作用 異なる空間領域の間の相互作用:コア・周辺プラズマ

新しい計算手法:ネットワーク分散並列処理

計算機クラスター間の連携:計算資源の有効利用

TASK コードの特色


- トカマクの時間発展シミュレーション
 - モジュール構造の統合シミュレーション
 - ○様々な加熱・電流駆動機構の実装
 - 高い移植性: UNIX 系 (Linux, MacOSX, SX-OS 等)
 - MPI ライブラリを用いた並列分散処理
 - 実験データベースの利用:ITPA 分布データベース
 - ヘリカル系への拡張:LHD計画研究(代表:中村祐司)
- 核燃焼プラズマ統合コード構想のコアコード
 - 最小限の統合コード:モジュールは交換可能
 - インターフェースの標準化:実装の検証
 - 利用者の拡大:マニュアル等の整備

TASK コードの構成

- Transport Analyzing System for tokamaK
- モジュール

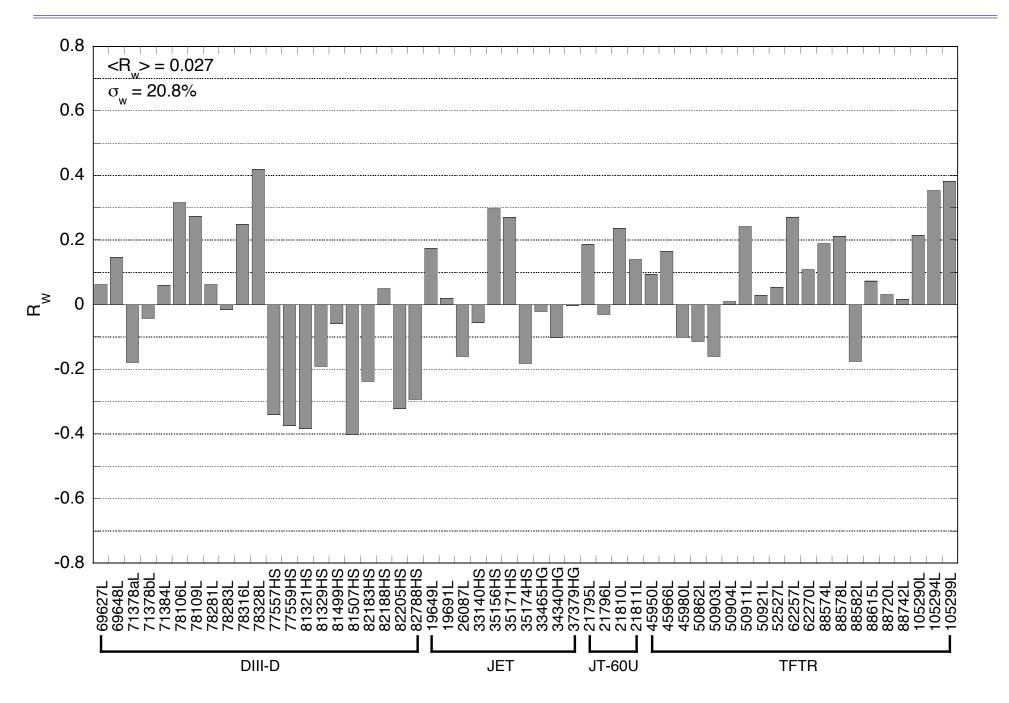
TASK/EQ	2 次元平衡解析	固定境界,トロイダル回転効果
TR	1次元輸送解析	拡散型輸送方程式,輸送モデル
WR	幾何光学的波動解析	EC, LH: 光線追跡法,ビーム追跡法
WM	波動光学的波動解析	IC, AW: アンテナ励起 , 固有モード
FP	速度分布解析	相対論的,軌道平均,3次元
DP	波動分散解析	局所誘電率テンソル,任意速度分布
LIB	共通ライブラリ	行列解法,特殊関数
PL	分布データ変換	磁気面座標⇔実座標,分布データベース
開発中: EQ	2 次元平衡解析	自由境界,有限要素法
TX	1次元輸送解析	流体型輸送方程式,輸送モデル
WA	線形安定性解析	波動解析,MHD不安定性,運動論的効果
WI	積分形波動解析	FLR 効果,高次サイクロトロン高調波

TASK コードのモジュール構造

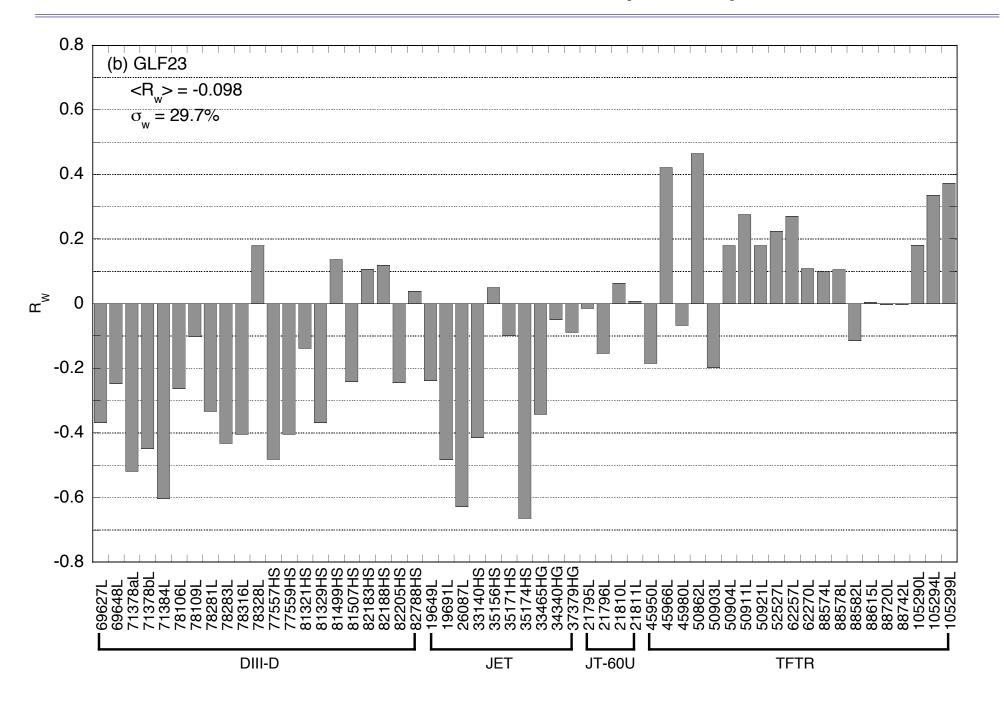
ITPA へ向けた解析

• 輸送・閉じ込め

- TR: CDBM/GLF23/Weiland 輸送モデルの比較(本多)
- TR: ITB 形成の輸送シミュレーション(本多)
- TX: 運動量入力による密度分布変化(本多)

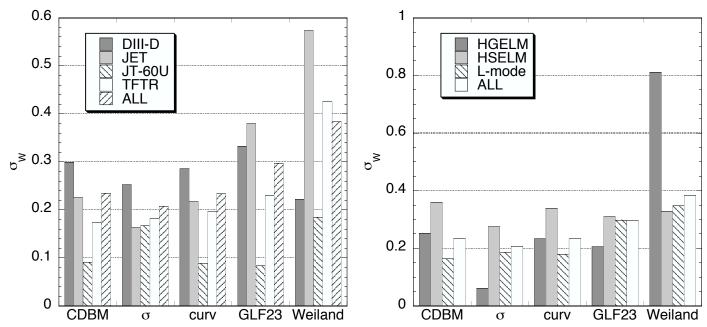

• 定常運転

- TR/EQ: ITER 運転シナリオ(本多)
- WR/DP/FP: EC 電流駆動の解析(福山)
- WM/DP/EQ: ICRF 加熱の解析(福山)

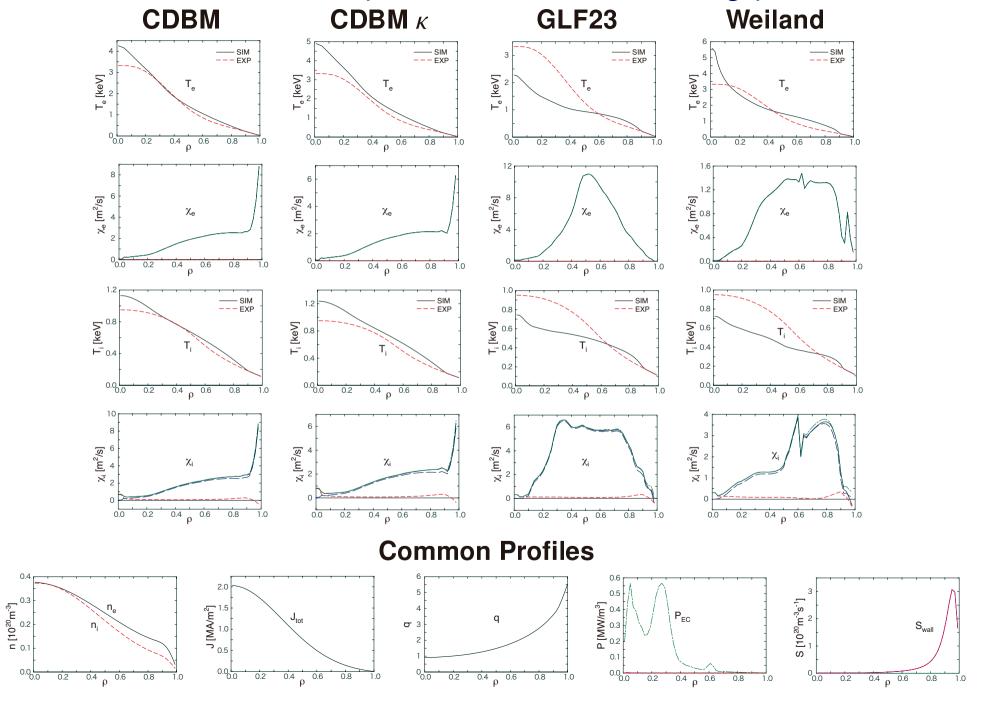

• MHD

- WM/DP/EQ/TR: アルヴェン固有モードの解析(福山)
- WA: 抵抗性壁モードの解析(阿久津)
- ペデスタル・ELM
 - TX: ETB 形成の輸送シミュレーション(本多)

蓄積エネルギーの偏差(非円形度効果を含めたCDBM)



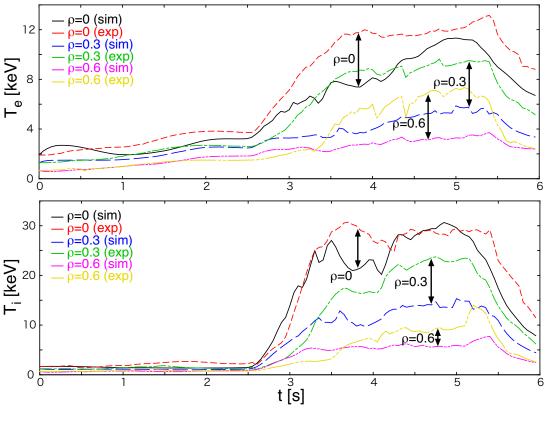
蓄積エネルギーの偏差 (GLF23)



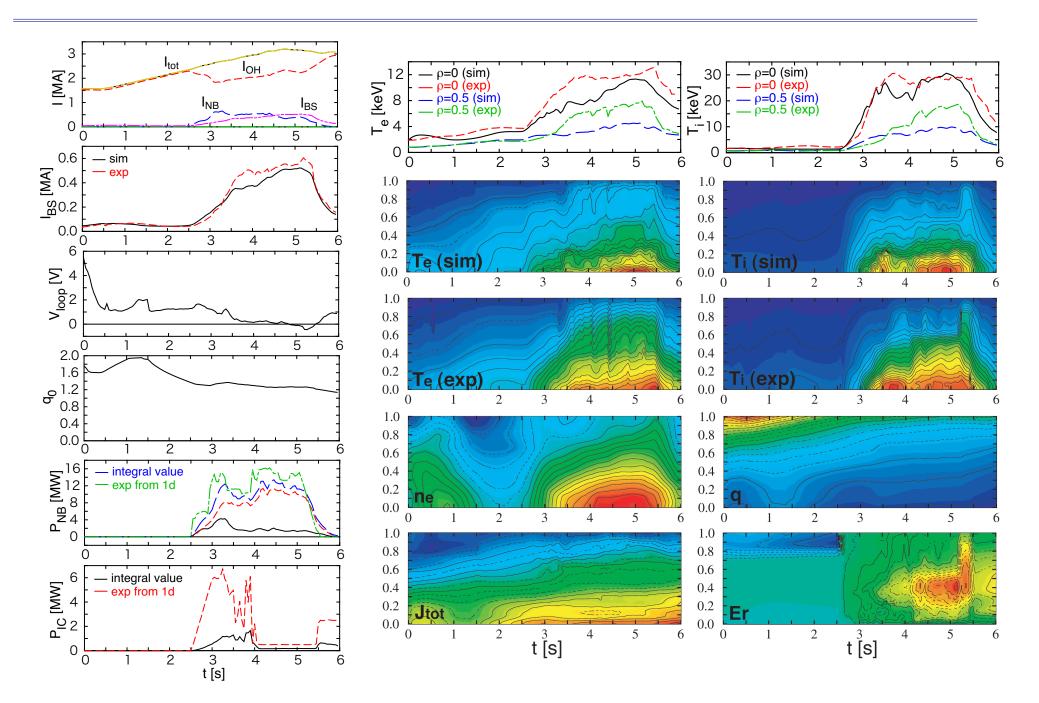
5 つのモデルによる $\sigma_{ m W}$ の比較

- 各運転モードと全放電に対して 5 つのモデルが計算した $\sigma_{
 m W}$ を比較する.
- 明らかに全放電では非円形度の効果を含めた CDBM モデルによる結果が最良
 - L-mode · · · CDBM モデル
 - HSELM · · · 非円形度効果を含めた CDBM モデル
 - HGELM · · · 非円形度効果を含めた CDBM モデル
- L-mode においては, Weiland モデルとGLF23 モデルが予測した σ_W はほぼ同等であり, HSELM においてはWeiland モデルとCDBM モデルの結果はほぼ同等であるが,全放電ではHGELM の標準偏差が大きいこととそれほど良いモードが無かったことが影響して, Weiland モデルの予測精度が最も悪かった.

DIII-D #78316 (L-mode, ECH and ICH heatings)

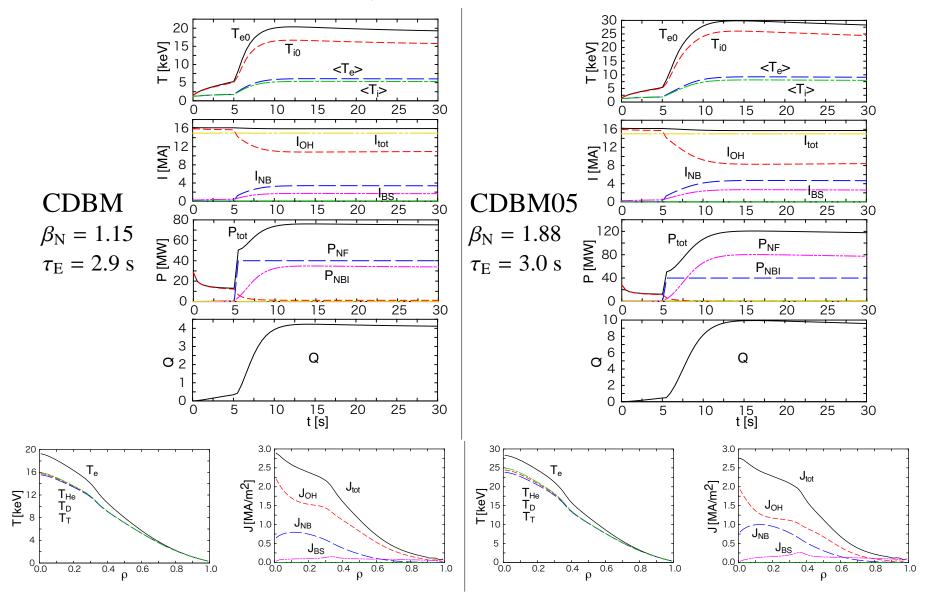

JET #40542

・放電の特徴


- 1.5 MAから3 MAへの立ち上げの中,段階的にNBIを14 MWまで引き上げ
- $\circ q(0) > 1.0$ during the discharge \Longrightarrow no sawtooth activities
- \circ ITB形成後2秒ほど定常状態となる . (fig. V_{loop})

• 計算結果

- $\circ E \times B$ シア効果を含めることで実験 \subset と同時刻にITBが形成され始めた \cdot $\overset{\circ}{\ge}$ $^{\circ}$
- イオンにおいてはほぼ同程度の ピーク温度を再現
- ○電子のITBは実験に比べて弱い.
- 。実験と比較してイオン,電子とも $\rho_{\mathrm{foot}}(\mathbf{ITB\ foot})$ が小さい \Longrightarrow 閉じ込 $\sum_{\mathbf{r}} 20$ め改善領域が狭い
- ○2 ~ 4 s での温度の低さはICRFパワーが正確に反映されてないことを示唆している可能性も.



JET #40542

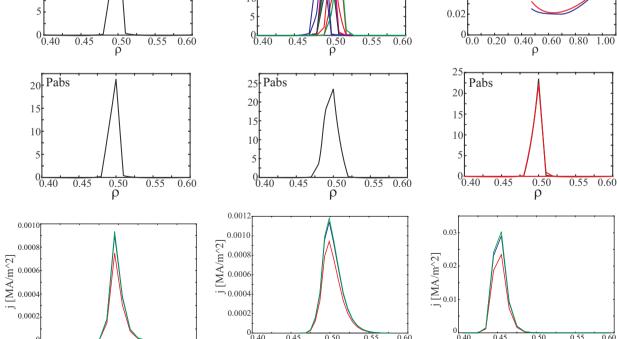
標準(高Q)運転シナリオ

- 大電流: $I_p = 15 \text{ MA}$, 軸上加熱: $P_{NB} = 40 \text{ MW}$
- 正磁気シア分布、 大きめの for to for the form the form

準定常運転シナリオ

• $I_p = 6 \rightarrow 9$ MA for 10 s $P_{NB} = 19$ MW on-axis, $P_{LH} = 25$ MW off-axis 12 <u>¥</u> 8 + 4 20 10 $<T_e>$ <T_e> $<T_i>$ 30 50 10 20 30 40 50 40 10 20 60 60 10 [WA] 1 [MA] I_{OH} **CDBM** CDBM05 10 20 30 30 50 60 40 50 10 20 40 $\beta_{\rm N} = 0.9$ $\beta_{\rm N} = 1.8$ WW 30 20 a 10 ₩ 40 d 20 P_{LH} $\tau_{\rm E} = 2.0 {\rm \ s}$ $\tau_{\rm E} = 3.1 {\rm s}$ P_{LH} P_{NF} P_{NF} P_{NBI} P_{NBI} 30 50 10 20 30 40 50 40 3.0 2.5 2.0 **O** 1.5 0.8 0.6 Q Q O 0.4 1.0 0.2 0.5 30 t [s] 10 20 50 10 20 50 40 40 1.2 J_{NB} J[MA/m²] **T [keV]** 8 T [keV] T_{He} T_{D} T_{T} T_D J_{OH} J_{LH} 0.8 0.2 0.4 ρ 0.6 0.8 0.8 0.4 ο 0.6 0.4 ρ 0.6 0.2 0.4 ρ 0.6 0.2 $I_{\rm OH} \sim 0$ $I_{\rm OH} \neq 0$

Analysis of ECCD by TASK Code


Top View 70° Poloidal angle 20° Toroidal angle 0 (m) Z(m) Initial beam radius $0.05\,\mathrm{m}$ Initial beam curvature 2 m 6 7 R(m) **One Ray Multi Rays**

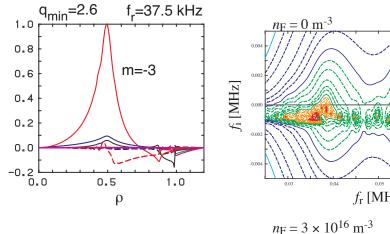
20 Pabs

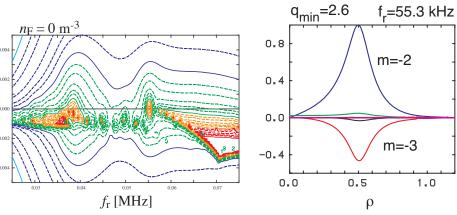
P_{abs} Profile

$j_{\rm CD}$ Profile

25 Pabs

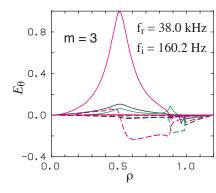
Beam Tracing

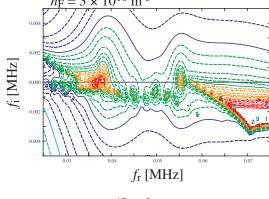

0.55 0.60

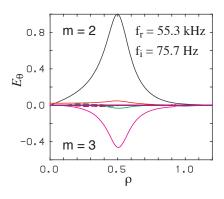

0.08

≘ 0.06 ਚੋਂ 0.04

Excitation by Energetic Particles ($q_{min} = 2.6$)



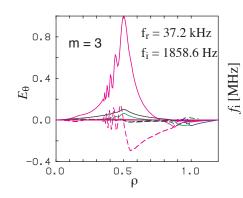


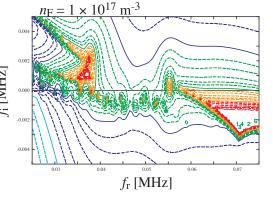


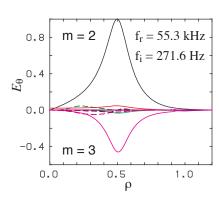
With EP

$$3 \times 10^{16} \,\mathrm{m}^{-3}$$

 $360 \,\mathrm{keV}$
 $0.5 \,\mathrm{m}$



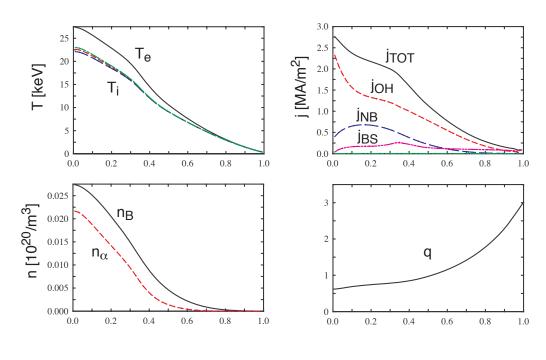


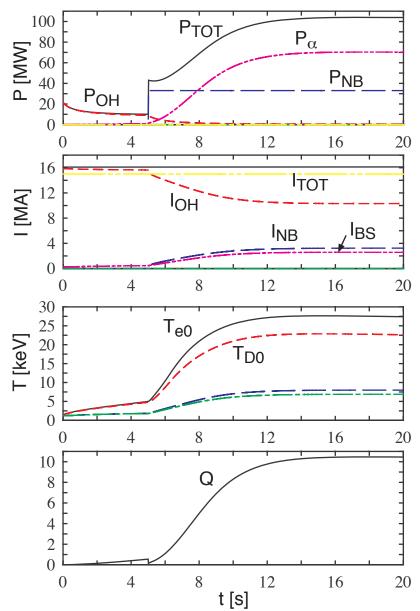


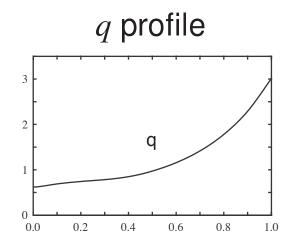
With EP

$$1 \times 10^{17} \,\mathrm{m}^{-3}$$

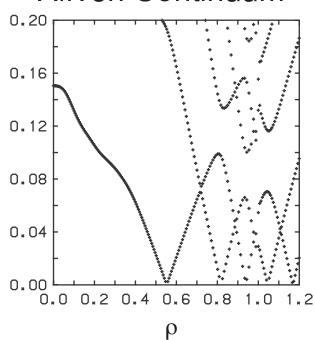
360 keV
0.5 m

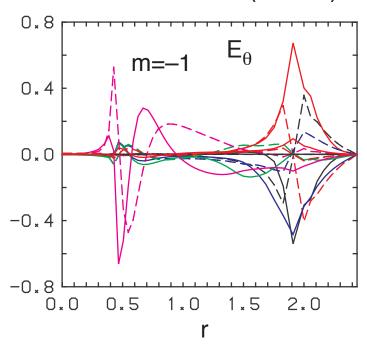





Standard H-mode Operation

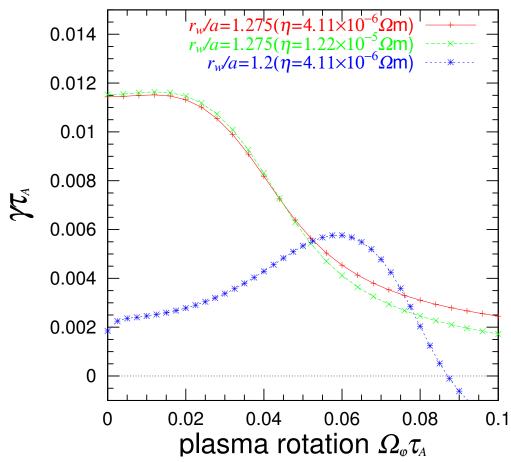
- $I_p = 15 \, \text{MA}$
- \bullet $P_{\rm NB} = 33\,{\rm MW}$
- $\beta_{\rm N} = 1.3$




AE in Standard H-mode Operation

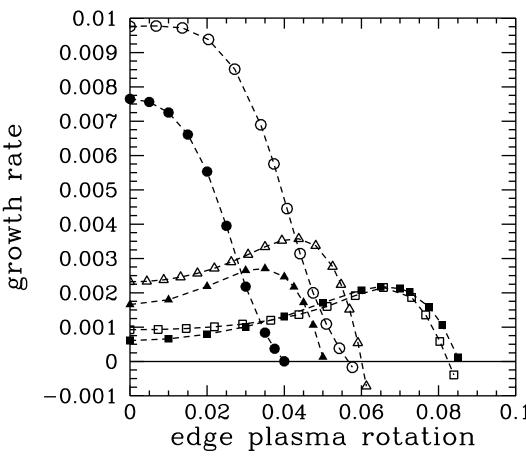
Alfvén Continuum

Mode structure (n = 1)



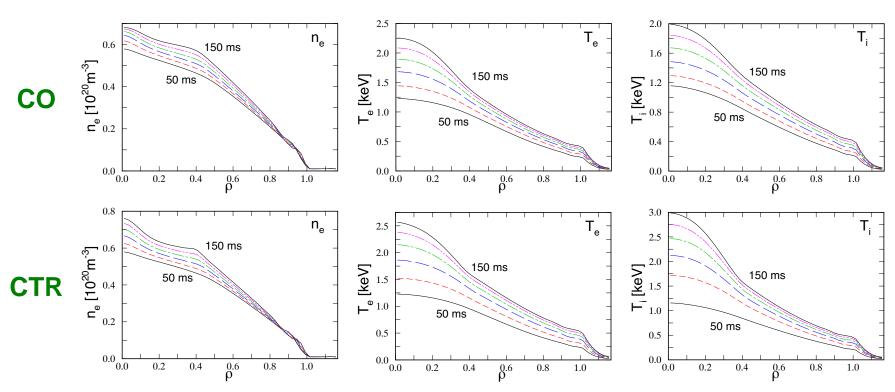
$$f_r = 95.95 \text{ kHz}$$

 $f_i = -1.95 \text{ kHz}$

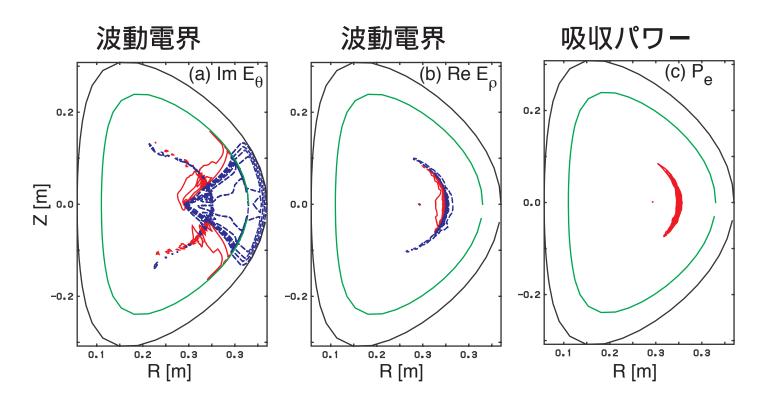

Stabilization due to q = 1

m=2/n=1 抵抗性壁モード(3)

■ RWMの成長率に対するトロイダル剛体回転の影響


TASK/WA コードの計算結果 . Fitzpatrick[1] による結果よりも安定化効果が弱い . $r_w=1.275$, $\eta=4.11\times 10^{-6}\Omega$ ·m の場合 , $\Omega_{\varphi}\tau_A>0.49$ で安定化される .

Fitzpatrick[1] による結果 . 黒いマークはCTD コードによる数値計算結果 . 白いマークは解析解 . 丸 , 三角 , 四角はそれぞれ抵抗性壁の位置が 1.275a, 1.2a, 1.09a の場合に対応する .


密度ピーキングシミュレーション(1)

- 乱流輸送モデルに CDBM モデルを使用
- シミュレーション開始 50 ms 後から **NBI** 6.5 MW 入射
- シミュレーション結果
 - CO入射の時の中心密度はCTRに比べて約12%高く,ピーキングが見られる
 - 実験と異なり, CTR 入射の時の温度は高い

中小型装置の解析

- 小型球形トカマク LATE における電子サイクロトロン波伝播(福山)
 - 右回り遮断層を透過した異常波の高域混成共鳴における吸収

- TRIAM-1M における EC 電流駆動解析(出射)
- Heliotron-J における ICRF 加熱解析(鳥居,北川)

利用者拡大のために(1)

• 想定する利用者

- シミュレーション研究者:初期条件,背景空間分布
- モデリング研究者:既存コードとの結合,統合シミュレーション
- 理論研究者:新しい理論モデルの検証
- 実験研究者:実験予測,経験的モデルの導入,実験データの解析

TASK コードの利用環境:

- Unix 環境:Linux, MacOSX, SX-OS 等
- Compiler : Fortran77, C ⇒ Fortran95, C
 - g77/gfortran/g95, pgf77/pgf95, ifort, xlf/xlf95, sxf90
- X Window System : EPS file に出力可能

利用者拡大のために (2)

TASK コードの利用:

- Open Source: 開発中,NCLASS, GLF23 等を除く(stable version)
 - http://bpsi.nucleng.kyoto-u.ac.jp/task/
- Full Source: password 必要.download 可能(unstable version)
 - cvs -d :pserver:anonymous@p-grp.nucleng.kyoto-u.ac.jp/cvs/
- Developer: account 必要. upload 可能(developer version)
 - cvs -d account@p-grp.nucleng.kyoto-u.ac.jp/cvs/

• マニュアルの整備

- 利用説明書(暫定版):インストール,モジュール利用説明(部分的)
- 英文解説書(今年中を予定):モデル解説
- 初心者向け利用説明書:要望あり(御手洗先生?)
- 利用者情報交換: Wiki: 検討中

今後の課題

• TASK コードの開発

- FORTRAN95 化
- 標準データインターフェースの完全導入
- 他のコードとのベンチマーク
- 平衡: 自由境界, プラズマ回転
- 輸送: 輸送係数や加熱源等のモジュール化, TX の整備
- ○波動: 有限ラーモア半径効果
- 運動量分布関数: 並列化, 輸送解析

• 利用者の拡大

- 既存のコードとの結合:安定性解析,ヘリカル系,TOPICS等
- マニュアルの整備
- 利用者間の情報交換