Japanese Efforts on the Integrated Modeling Part I BPSI Activity and TASK Code Development

A. Fukuyama

Department of Nuclear Engineering, Kyoto University

in collaboration with M. Yagi, M. Honda and BPSI Working Group

Contents

- BPSI: Burning Plasma Simulation Initiative
- TASK: Core Code for Integrated Modeling
- Summary

Burning Plasma Simulation

• Why needed?

- To predict the behavior of burning plasmas
- ° To develop reliable and efficient schemes to control them
- What is needed?
 - Simulation describing a burning plasma:
 - Whole plasma (core & edge & divertor & wall-plasma)
 - Whole discharge
 - (startup & sustainment & transients events & termination)

(still limited)

- **Reasonable accuracy** (validation with experimental data)
- Reasonable computer resources
- How can we do?
 - Gradual increase of understanding and accuracy
 - Organized development of simulation system

BPSI: Burning Plasma Simulation Initiative

Research Collaboration among Universities, NIFS and JAEA

Targets of BPSI

- Framework for collaboration of various plasma simulation codes
 - **Common interface** for data transfer and execution control
 - Standard data set for data transfer and data storage
 - Reference core code: TASK
 - Helical configuration: included
- Physics integration with different time and space scales
 - Transport during and after a transient MHD events
 - Transport in the presence of magnetic islands
 - Core-SOL interface and ...
- Advanced technique of computer science
 - Parallel computing: PC cluster, Scalar-Parallel, Vector-Parallel
 - **Distributed computing**: GRID computing, Globus, ITBL

Status of BPSI

• 1st Stage:present status

- Development of standard dataset and module interface
- Integrated simulation of multi-scale physics
- Validation of modules with experimental results
- Transport simulation in 3D helical configuration

2nd Stage

- Integration of existing and newly-developed modules
- Global integrated simulation (Core+Edge, Transport+RF+MHD,...)
- Validation of modules with direct numerical simulation
- Integrated simulation in 3D helical configuration

3rd Stage

- Integrated simulation including startup and termination
- Full integrated simulation of burning plasmas

Activities of BPSI

Support of Meetings

- Domestic workshops (supported by RIAM, NIFS, JAEA)
- Workshop with experimentalists (supported by NF Forum)
- US-Japan workshop with participation from EU
- Korea-Japan workshop

Code Development

- **BPSI Framework**: standard dataset and interface
 - TASK code: (Kyoto U)
 - TASK/H for helical plasmas: (NIFS, Kyoto U)
 - Predictive TOPICS for burning plasmas: (JAEA)
- Development of integrated modeling:
- Transport-Turbulence-MHD (Kyushu U)
- Core-SOL-Divertor (JAEA, CRIEPI, Tokyo U)

BPSI: Burning Plasma Simulation Initiative

Integrated code: TASK and TOPICS

TASK Code

• Transport Analysing System for TokamaK

Features

- Core of Integrated Modeling Code in BPSI
 - Modular structure
 - Reference data interface and standard data set
- Various Heating and Current Drive Scheme
- EC, LH, IC, AW, NB

• High Portability

- Most of library routines included (except LAPACK and MPI)
- Own graphic libraries (X11, eps, OpenGL)
- **Development using CVS** (Concurrent Version System)
 - Open Source (Pre-release with f77: http://bpsi.nucleng.kyoto-u.ac.jp/task/)
- Parallel Processing using MPI Library
- Extension to Toroidal Helical Plasmas

Modules of TASK

EQ	2D Equilibrium	Fixed/Free boundary, Toroidal rotation
TR	1D Transport	Diffusive transport, Transport models
WR	3D Geometr. Optics	EC, LH: Ray tracing, Beam tracing
WM	3D Full Wave	IC, AW: Antenna excitation, Eigen mode
FP	3D Fokker-Planck	Relativistic, Bounce-averaged
DP	Wave Dispersion	Local dielectric tensor, Arbitrary $f(v)$
PL	Data Interface	Data conversion, Profile database
LIB	Libraries	

Under Development

TX	Transport analysis including plasma rotation and E_r
WA	Global linear stability analysis
WI	Integro-differential wave analysis (FLR, $\mathbf{k} \cdot \nabla B \neq 0$)

All developed in Kyoto U

Modular Structure of TASK

Standard Dataset (interim 1/3)

Shot data

° Machine ID, Shot ID, Model ID

• Device data: (Level 1)

RR	R	m
RA	a	m
RB	b	m
BB	В	Т
RKAP	К	
RDLT	δ	
RIP	Ip	А

• Equilibrium data: (Level 1)

PSIP	$\psi_{\rm p}(R,Z)$	Tm^2
PSIR	$\psi(ho)$	Tm^2
PPSI	p(ho)	MPa
TPSI	T(ho)	Tm
QPSI	1/q(ho)	
JPAV	$j^{ m ave}_{\parallel}(ho)$	

Geometrical major radius
Average minor radius $(R_{\text{max}} - R_{\text{min}})/2$
Wall radius
Vacuum toroidal magnetic field at (RR, 0)
Elongation of plasma boundary
Triangularity of plasma boundary
Typical plasma current

2D poloidal magnetic flux Poloidal magnetic flux Plasma pressure $B_{\phi}R$ Safety factor Averaged parallel current density

• Metric data

• **1D**: $V'(\rho)$, $\langle \nabla \rho \rangle(\rho)$, ... • **2D**: g_{ij} , ...

• Fluid plasma data

NSMAX	S	
PA	A_s	
PZ0	Z_{0s}	
PZ	Z_s	
PN	$n_s(\rho)$	m^3
PT	$T_s(\rho)$	eV
PU	$u_{s\phi}(\rho)$	m/s

Number of particle species Atomic mass Charge number Charge state number Number density Temperature Toroidal rotation velocity

• Kinetic plasma data

FP $f(p, \theta_p, \rho)$

momentum distribution at *theta* = 0

• Dielectric tensor

CEPS $\overleftarrow{\epsilon}(\rho, \chi, \xi)$ Local dielectric tensor

• Full wave field data

CE	$\pmb{E}(ho,\chi,\xi)$	V/m	Complex wave electric field
CB	$\pmb{B}(\rho,\chi,\xi)$	Wb/m^2	Complex wave magnetic field

• Ray trajectory wave field data

RRAY	$R(\ell)$	m	R of ray at length ell
ZRAY	$Z(\ell)$	m	Z of ray at length ell
PRAY	$\phi(\ell)$	rad	ϕ of ray at length <i>ell</i>
CERAY	$oldsymbol{E}(\ell)$	V/m	Wave electric field of ray at length <i>ell</i>
PWRAY	$P(\ell)$	W	Wave power of ray at length ell
DRAY	$d(\ell)$	m	Beam radius at length ell
VRAY	$v(\ell)$	1/m	Beam curvature at length ell

Data Exchange Interface in BPSI

Data manipulation

• Specify data:

- machine, shot, model, time

• Set data:

— 0D, 1D(ρ), 2D(ρ, χ), 2D(R, Z)

• Get data:

- Define data
- Save data into a file
- Load data from a file
- Plot data

Example for TASK/TR

TR INIT $TR_PROF(T)$ TR_EXEC(DT) TR_GOUT (PSTR) TR SAVE TR LOAD TR TERM

Initialization (Default value) **TR_PARM(ID,PSTR)** Parameter setup (Namelist input) Profile setup (Spatial profile, Time) Exec one step (Time step) Plot data (Plot command) Save data in file load data from file Termination

```
BPSX_INIT('TR')
BPSX_PARM('TR', ID, PSTR)
BPSX_PROF('TR',T)
BPSX_EXEC('TR',DT)
BPSX_GOUT('TR',PSTR)
BPSX_SAVE('TR')
BPSX_LOAD('TR')
BPSX_TERM('TR')
```

Module registration

. . .

TR STRUCT%INIT=TR INIT TR STRUCT%PARM=TR PARM TR STRUCT%EXEC=TR EXEC

```
BPSX_REGISTER('TR', TR_STRUCT)
```

Recent Results of TASK code

- **EQ/WM** Full Wave Analysis of ECH in a Small-Size ST
- **WM/FP/DP** Development of Self-Consistent Wave Analysis
- **EQ/TR** Transport Simulation for ITER
- **EQ/TR/MW/DP** Integrated Analysis of AE in ITER Plasma
- **WA** Full Wave Analysis of RWM
- **TX** Dynamical Transport Simulation including Rotation

Full Wave Analysis of ECH in a Small-Size ST

- Small-size spherical tokamak: LATE (Kyoto University)
 - **T.** Maekawa et al., IAEA-CN-116/EX/P4-27 (Vilamoura, Portuga, 2004) • $R = 0.22 \text{ m}, a = 0.16 \text{ m}, B_0 = 0.0552 \text{ T}, I_p = 6.25 \text{ kA}, \kappa = 1.5$
 - \circ f = 2.8 GHz, Toroidal mode number n = 12, Extraordinary mode

Self-Consistent Wave Analysis with Modified f(v)

Modification of velocity distribution from Maxwellian

- Absorption of ICRF waves in the presence of energetic ions
- Current drive efficiency of LHCD
- NTM controllability of ECCD (absorption width)
- Self-consistent wave analysis including modification of $f(\mathbf{v})$

Code Development in TASK

- \circ Ray tracing analysis with arbitrary f(v): Already done
- \circ Full wave analysis with arbitrary f(v): **Completed**
- Fokker-Plank analysis of ray tracing results: Already done
- Fokker-Plank analysis of full wave results: Almost competed
- Self-consistent iterative analysis: Preliminary

• Tail formation by ICRF minority heating

r/a

TASK/TR

• 1-D Diffusive Transport Simulation

• Variables:

Density	n_s for s = D, T, He, Impurity
Rotation	u_s for s = D, T, He, Impurity
Temperature	T_s for s = Electron, D, T, He, Impurity
Energy density	W_s for s = α , Beam ion
Neutral density	n_{fs} (fast) , n_{ss} (slow) for s = D, T
Impurity density	$n_{\rm Imp}$ for s = C ⁶⁺
Poloidal flux	$\partial \psi / \partial \rho$

• Diffusion equation

• Transport coefficients

Neoclassical models (Hinton & Hazeltine, Hirshman, Sauter, NCLASS) Turbulent models (CDBM, GLF23, IFS/PPPL, Weiland, Bohm/Gyro-Bohm)

• Sources and Sinks:

Ionization, Radiation Collisional momentum and energy transfer Simple NB, RF heating and current drive Fusion reaction

CDBM Transport Model: CDBM05

Comparison of Transport Models: ITPA Profile DB

Deviation of Stored Energy CDBM CDBM05

Weiland

Dependence on Operation Mode and Devices

- Both CDBM05 and GLF23 reproduce the ITPA profile database pretty well.
- CDBM05 describes L-mode discharges better than GLF23.
- Both CDBM05 and GLF23 reproduces T_i much better than T_e , when the temperature of the other species is fixed to the experimental value.

High *Q* Operational Scenario

- Large plasma current: $I_p = 15 \text{ MA}$, On-axis heating: $P_{\text{NB}} = 40 \text{ MW}$
- Positive shear profile, Relatively large f_{OH}

Hybrid Operational Scenario

- Moderate plasma current: $I_p = 12 \text{ MA}$, On-axis heating: $P_{\text{NB}} = 33 \text{ MW}$
- Flat q profile with small ITB inside $\rho = 0.4$

Quasi-Steady State Operational Scenario

• $I_p = 6 \rightarrow 9$ MA for 10 s, Negative shear profile, $I_{OH} \sim 0$

q Profiles of Previous Shots

- Control of current profile in the hybrid operation requires more improvement to keep q(0) > 1.
- Performance of the quasi steady-state operation will be improved if the H-mode plasma edge (edge transport barrier) are included. .

Integrated Analysis of AE in ITER Plasma

Combined Analysis

- Equilibrium: TASK/EQ
- Transport: TASK/TR
 - Turbulent transport model: CDBM
 - Neoclassical transport model: NCLASS (Houlberg)
 - Heating and current profile: given profile
- Full wave analysis: TASK/WM

Stability analysis

- \circ Standard H-mode operation: $I_p = 15$ MA, $Q \sim 10$
- \circ Hybrid operation: $I_p = 12 \text{ MA}$, flat q profile above 1
- \circ Steady-state operation: $I_p = 9 \text{ MA}$, reversed shear

Standard H-mode Operation

AE in Standard H-mode Operation

-0.8

Mode structure (n = 1)^{0.8} ^{0.4} ^{0.0} ^{-0.4}

0.0 0.5 1.0 1.5 2.0 r $f_r = 95.95 \text{ kHz}$ $f_i = -1.95 \text{ kHz}$

Stabilization due to q = 1

Full Wave Analysis of RWM (TASK/WA)

• Full wave analysis: solving Maxwell's eqation

$$\nabla \times \nabla \times E = \frac{\omega^2}{c^2} \overleftrightarrow{\epsilon} \cdot E + \mathrm{i} \,\omega \mu_0 \mathbf{j}_{\mathrm{ext}}$$

- Resistive MHD dielectric tensor including diamagnetic flow
- Ferromagnetic Resistive wall

Summary

- The activity of **Burning Plasma Simulation Initiative** in Japan is gradually growing.
- We are developing **TASK** code as a reference core code for burning plasma simulation based on transport analysis.
- **Standard dataset** and **module interface** are still under discussion. They will be implemented by the end of this summer.

• Future work for TASK

- Improvement of the modules: Full modular structure, Fortran95
- o Improvement of the models: Edge plasma, Sawtooth, ...
- Systematic comparison with experimental data
- Integrated simulation with other code: Stability, Peripheral, ...