#### **Fusion Simulation Activities in Japan**

#### **A. Fukuyama** Department of Nuclear Engineering, Kyoto University

in collaboration with

Y. Kishimoto (Kyoto Univ/JAEA)

N. Nakajima (NIFS)

T. Ozeki (JAEA)

**M. Yagi** (Kyushu Univ)

### Outline

- Overview
- Multi-scale simulations in NIFS ... Tomorrow morning (Nakajima)
- NEXT: numerical experiment project in JAEA
- BPSI: burning plasma simulation initiative
- TASK: Integrated modeling code system ... Tomorrow afternoon (Fukuyama)
- Integrated modeling activities in JAEA
- ITER-BA computer simulation center

### **Overview**

- Computer simulation has been playing a key role in plasma physics nd nuclear fusion research in Japan
  - **Proof of principle simulations**: complicated phenomena
  - First principle simulations: large-scale nonlinear phenomena
  - o computer resources limited the range of time and spatial scales
- Advances in understanding of nonlinear plasma physics and computer technology lead to new trend of fusion plasma simulations
  - Multi-scale physics simulations: with wide range scales
  - Integrated modeling: with interacting various modules

## **Simulation Research in Japan**



### Outline

- Overview
- Multi-scale simulations in NIFS ... Tomorrow morning (Nakajima)
- NEXT: numerical experiment project in JAEA
- BPSI: burning plasma simulation initiative
- TASK: Integrated modeling code system ... Tomorrow afternoon (Fukuyama)
- Integrated modeling activities in JAEA
- ITER-BA computer simulation center

# **Multi-Scale Simulations in NIFS**

### **NIFS: National Institute for Fusin Science**

Integrated model based approach

### TASK/H

3D Helical Extension of Integrated modeling code TASK

**Hierarchy model based approach** 

MINOS: MHD simulation code MEGA: MHD & EP hybrid code CAP: multi-phase fluid code GKV: gyrokinetic-Vlasov code etc

### Outline

- Overview
- Multi-scale simulations in NIFS ... Tomorrow morning (Nakajima)
- NEXT: numerical experiment project in JAEA
- BPSI: burning plasma simulation initiative
- TASK: Integrated modeling code system ... Tomorrow afternoon (Fukuyama)
- Integrated modeling activities in JAEA
- ITER-BA computer simulation center

### **NEXT : Numerical Experiment of Tokamaks**

#### Principle based fusion research through advanced computation



#### Key code development covering plasma dynamics with wide spatio-temporal scales

NEXT



### **Code Development in NEXT Project**



### First-Principle Simulation Code Cluster (NEXT project in JAEA)

| MHD       | Linear<br>Stability         | MARG2D<br>ERATO                                      | Ideal MHD                   | 3D toroidal      |
|-----------|-----------------------------|------------------------------------------------------|-----------------------------|------------------|
|           |                             | AEOLUS                                               | Resistive MHD               | 3D toroidal      |
|           | Nonlinear simulation        | MHFVSP                                               | Compressible                | 3D, 3D toroidal  |
|           |                             | ALSTOR_NEO                                           | Reduced set                 | 3D, 3D toroidal  |
| Core      | Nonlinear                   | R5F                                                  | Landau fluid                | 3D, 3D toroidal  |
| Transport | rt turbulence<br>simulation | GFS                                                  | model                       | 3D local         |
|           |                             | G3D, GT3D $\rho_{\rm i}$ scale, $\rho_{\rm e}$ scale | Gyro kinetic<br>model       | 3D, 3D toroidal  |
| DIVERTOR  | SOL-divertor simulation     | SONIC<br>(SOLDOR + NEUT2D<br>+ IMPMC)                | Integrated<br>divertor code | 2D toroidal      |
|           |                             | PARASOL                                              | Particle model              | 2D (2D toroidal) |

### Target problem of fusion plasma simulation



Target simulation

*"ITER" relevant realistic configuration Overcome different scale hierarchy via computational resources* 

Computer resource  $\rightarrow$  1~10PFlops

 $a/_{i} = 500 \sim 1,000$ 

*ion scale turbulence Present simulation* 

- Small machine size
- Scale separation between ion turbulence and electron turbulence
- Computational resource  $\rightarrow$  0.5TFlops

Ion/electron scale turbulence in "ITER" relevant configuration

### Outline

- Overview
- Multi-scale simulations in NIFS ... Tomorrow morning (Nakajima)
- NEXT: numerical experiment project in JAEA
- BPSI: burning plasma simulation initiative
- TASK: Integrated modeling code system ... Tomorrow afternoon (Fukuyama)
- Integrated modeling activities in JAEA
- ITER-BA computer simulation center

### **BPSI: Burning Plasma Simulation Initiative**

Research Collaboration among Universities, NIFS and JAEA



### **Burning Plasma Simulation**

#### • Why needed?

- To predict the behavior of burning plasmas
- ° To develop reliable and efficient schemes to control them
- What is needed?
  - Simulation describing a burning plasma:
    - Whole plasma (core & edge & divertor & wall-plasma)
    - Whole discharge
      - (startup & sustainment & transients events & termination)

(still limited)

- **Reasonable accuracy** (validation with experimental data)
- Reasonable computer resources
- How can we do?
  - Gradual increase of understanding and accuracy
  - Organized development of simulation system

### **Targets of BPSI**

- Framework for collaboration of various plasma simulation codes
  - **Common interface** for data transfer and execution control
  - Standard data set for data transfer and data storage
  - Reference core code: TASK
  - Helical configuration: included
- Physics integration with different time and space scales
  - Transport during and after a transient MHD events
  - Transport in the presence of magnetic islands
  - Core-SOL interface and ...
- Advanced technique of computer science
  - Parallel computing: PC cluster, Scalar-Parallel, Vector-Parallel
  - **Distributed computing**: GRID computing, Globus, ITBL

### **Status of BPSI**

#### • 1st Stage:present status

- Development of standard dataset and module interface
- Integrated simulation of multi-scale physics
- Validation of modules with experimental results
- Transport simulation in 3D helical configuration

### 2nd Stage

- Integration of existing and newly-developed modules
- Global integrated simulation (Core+Edge, Transport+RF+MHD,...)
- Validation of modules with direct numerical simulation
- Integrated simulation in 3D helical configuration

#### 3rd Stage

- Integrated simulation including startup and termination
- Full integrated simulation of burning plasmas

### **Activities of BPSI**

#### Support of Meetings

- Domestic workshops (supported by RIAM, NIFS, JAEA)
- Workshop with experimentalists (supported by NF Forum)
- US-Japan workshop with participation from EU
- Korea-Japan workshop

#### Code Development

- **BPSI Framework**: standard dataset and interface
  - TASK code: (Kyoto U)
  - TASK/H for helical plasmas: (NIFS, Kyoto U)
  - Predictive TOPICS for burning plasmas: (JAEA)
- Development of integrated modeling:
- Transport-Turbulence-MHD (Kyushu U)
- Core-SOL-Divertor (JAEA, CRIEPI, Tokyo U)

### **BPSI: Burning Plasma Simulation Initiative**

#### Integrated code: TASK and TOPICS



### Outline

- Overview
- Multi-scale simulations in NIFS ... Tomorrow morning (Nakajima)
- NEXT: numerical experiment project in JAEA
- BPSI: burning plasma simulation initiative
- TASK: Integrated modeling code system ... Tomorrow afternoon (Fukuyama)
- Integrated modeling activities in JAEA
- ITER-BA computer simulation center

### **TASK Code**

• Transport Analysing System for TokamaK

#### Features

- Core of Integrated Modeling Code in BPSI
  - Modular structure
  - Reference data interface and standard data set
- Various Heating and Current Drive Scheme
- EC, LH, IC, AW, NB

#### • High Portability

- Most of library routines included (except LAPACK and MPI)
- Own graphic libraries (X11, eps, OpenGL)
- **Development using CVS** (Concurrent Version System)
  - Open Source (Pre-release with f77: http://bpsi.nucleng.kyoto-u.ac.jp/task/)
- Parallel Processing using MPI Library
- Extension to Toroidal Helical Plasmas

### Modules of TASK

| EQ  | 2D Equilibrium            | Fixed/Free boundary, Toroidal rotation    |
|-----|---------------------------|-------------------------------------------|
| TR  | 1D Transport              | Diffusive transport, Transport models     |
| WR  | <b>3D Geometr. Optics</b> | EC, LH: Ray tracing, Beam tracing         |
| WM  | 3D Full Wave              | IC, AW: Antenna excitation, Eigen mode    |
| FP  | 3D Fokker-Planck          | Relativistic, Bounce-averaged             |
| DP  | Wave Dispersion           | Local dielectric tensor, Arbitrary $f(v)$ |
| PL  | Data Interface            | Data conversion, Profile database         |
| LIB | Libraries                 |                                           |

#### **Under Development**

| TX | Transport analysis including plasma rotation and $E_r$                        |
|----|-------------------------------------------------------------------------------|
| WA | Global linear stability analysis                                              |
| WI | Integro-differential wave analysis (FLR, $\mathbf{k} \cdot \nabla B \neq 0$ ) |

#### All developed in Kyoto U

### **Modular Structure of TASK**



### Outline

- Overview
- Multi-scale simulations in NIFS ... Tomorrow morning (Nakajima)
- NEXT: numerical experiment project in JAEA
- BPSI: burning plasma simulation initiative
- TASK: Integrated modeling code system ... Tomorrow afternoon (Fukuyama)
- Integrated modeling activities in JAEA
- ITER-BA computer simulation center

### **Strategy for Burning Plasma Research**

#### **Burning Plasma Simulation Code Cluster Fundamental Researches** Transport code **JT-60 Experiments** TOPICS and database **Heating and Current** - Heat and particle transport Drive property - MHD phenomena and **Impurity Transport** instability and Integratio - Divertor property Modeling Validation High energy phenomena **Edge Pedestal Divertor** Simulation base on the first principle MHD - Turbulence simulation - MHD simulation **High Energy Particle** - Divertor simulation

### **Burning Plasma Simulation Code Cluster in JAEA**

| Transport code TOPICS   | <u>Tokar</u><br>Time<br>1D ti<br>Inve | nak Preduction and Interpretation Code<br>e dependent/Steary state analyses<br>ransport and 2D equilibrium Matrix<br>rsion Method for NeoClassical Trans. |  |
|-------------------------|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Heating & Current Drive |                                       | ECCD/ECH (Ray tracing, Relativistic F-P), NBCD (1 or 2D F-P)                                                                                              |  |
| Impurity Transport      | t                                     | 1D transport for each impurities,Radiation: <b>IMPACT</b>                                                                                                 |  |
| Edge Pedestal           |                                       | Perp. and para. transport in SOL and Divertor, Neutral particles.                                                                                         |  |
| Divertor                |                                       | Impurity transport on SOL/Div. : SOLDOR, NEUT2D, IMPMC                                                                                                    |  |
| MHD                     |                                       | Tearing/NTM, High-n ballooning,<br>Low-n: <b>ERATO-J</b> , Low and Midn<br><b>MARG2D</b>                                                                  |  |
| High Energy Behavi      | iour                                  | Transport by $\alpha$ -driven instability: <b>OFMC</b>                                                                                                    |  |

### **Transport Model for ITB**

Sharp reduction of anomalous transport in RS region (k ~ 0) can reproduce JT-60U experiment of strong RS current-hole plasmas

(N. Hayashi et al., Nucl. Fusion 45 (2005) 933)

Transport becomes neo-classical level in RS region, which results in the autonomous formation of ITB and strong RS through large bootstrap current.



#### ITER steady-state simulation with weakly-reversedshear plasma



k=0, C=1.2, w/o ExB shear stabilization

Steady-state :  $\beta_N \sim 3.1$ , Q~4.6, H<sub>H98(y,2)</sub>~1.8 No thermal instability



### **Simulation of ELM**



2D Newcomb equation is solved with parallel computer S.Tokuda, Phys. Plasmas 6 (8) 1999

## **ELM Model**

- The stability is examined in each iteration step of TOPICS.
  - When the plasma is unstable, the thermal diffusivity increases according to the eigen-function.



### Collapse and Recovery of T<sub>i</sub>

- n=7 mode becomes unstable at 1.7. The other modes are stable (n=1-6, and 8-20).
- The heat conductivity increases according to the ٠ eigen function.
- The pedestal of the ion temperature is degraded. ۰
  - The instability was checked when the shoulder of
    - T<sub>i</sub> relaxed by 80%.  $\Delta$ W/W<sub>ped</sub> ~0.23



0.9

ρ

0.95



### **SOL/Divertor Codes in JAEA**





### **SOLDOR/NEUT2D Simulation**



ST divertor design by Kyushu university.

### Outline

- Overview
- Multi-scale simulations in NIFS ... Tomorrow morning (Nakajima)
- NEXT: numerical experiment project in JAEA
- BPSI: burning plasma simulation initiative
- TASK: Integrated modeling code system ... Tomorrow afternoon (Fukuyama)
- Integrated modeling activities in JAEA
- ITER-BA computer simulation center

### **ITER-BA** computer simulation center

- **ITER-BA**: Broader Approach activites in support of ITER
  - Agreement between Japan and EURATOM:
    - to be established soon.
- Activites: (under negociation)
  - Satellite Tokamak Programme:
  - JT-60SA (Advanced Superconducting Tokamak)

#### • IFMIF-EVEDA:

- Engineering Validation and Engineering Design Activities for the International Fusion Materials Irradiation Facility
- **IFERC**: International Fusion Energy Research Center
- DEMO Design and R&D Coordination Center
- Fusion Computer Simulation Center (2012~)
- ITER Remote Experimentation Center

## **International Fusion Energy Research Center**



### Summary

- Computer simulation is playing a key role in fusion research in Japan.
- Principle based simulations are being promoted as a hierarchy model based approach in NIFS and the NEXT project in JAEA.
- Integrated simulations are forwarded by BPSI; TASK in Kyoto Univ., TOPICS in JAEA, and TASK/H in NIFS are under development in collaboration with each other.
- We welcome **international collaboration** with Chinese fusion simulation activities.