Workshop on ITER simulation PKU, Beijing, 2006/05/16

Integrated Torus Plasma Modeling by TASK code

A. Fukuyama, M. Honda, T. Akutsu Department of Nuclear Engineering, Kyoto University

Contents

- TASK: Integrated Modeling Code
- Modules of TASK codes
- Recent results of TASK code
- Summary

TASK Code

- Transport Analysing System for TokamaK
- Features
 - Core of Integrated Modeling Code in BPSI
 - Modular Structure
 - Various Heating and Current Drive Scheme
 - High Portability
 - Development using CVS
 - Open Source
 - Parallel Processing using MPI Library
 - Extension to Toroidal Helical Plasmas

Modular Structure of TASK

Data Interface Layer PL

Role of Interface Layer

- To keep the present status of plasma
- To store the history of plasma
- Interface to file system
- Interface to experimental profile database
- Interface to simulation profile database

Data to be stored

- Standard dataset
 - Shot data, Device data
 - Equilibrium data, Metric data
 - Fluid plasma data, Kinetic plasma data
- Dielectric tensor data, Full wave data, Ray/Beam tracing data

User-defined data

Standard Dataset (interim)

Shot data						
Machine ID, Shot ID, Model ID						
Device data: (Level 1)						
RR	R	m	Geometrical major radius			
RA	а	m	Average minor radius (R _{max} -			
			$R_{\min})/2$			
RB	b	m	Wall radius			
BB	В	Т	Vacuum toroidal magnetic			
			field at (RR, 0)			
RKAP	К		Elongation at boundary			
RDLT	δ		Triangularity at boundary			
RIP	Ip	А	Typical plasma current			
Equilibrium data: (Level 1)						
PSIP	$\psi_{\rm p}(R,Z)$	Tm^2	2D poloidal magnetic flux			
PSIR	$\psi(\rho)$	Tm^2	Poloidal magnetic flux			
PPSI	p(ho)	MPa	Plasma pressure			
TPSI	$T(\rho)$	Tm	$B_{\phi}R$			
QPSI	$1/q(\rho)$		Safety factor			
JPAV	$j^{ m ave}_{\parallel}(ho)$		Averaged parallel current			
			density			
Metric data						

1D: $V'(\rho)$, $\langle \nabla \rho \rangle(\rho)$, \cdots **2D**: g_{ij} , \cdots

Fluid plasma data

NSMAX	S			
PA	A_s			
PZ0	Z_{0s}			
PZ	Z_s			
PN	$n_s(\rho)$	m^3		
PT	$T_s(\rho)$	eV		
PU	$u_{s\phi}(\rho)$	m/s		
Cinetic plasma data				

 $f(p, \theta_p, \rho)$

Dielectric tensor data

FP

CB

CEPS	$\overleftrightarrow{\epsilon}(\rho,\chi,\xi)$
Full wave	field data
CE	$E(\rho, \chi, \xi) V/2$

- $E(\rho, \chi, \xi)$ V/m Complex wave electric field $B(\rho, \chi, \xi)$ Wb/m² Complex wave magnetic field
- $B(\rho, \chi, \xi)$ Wb/m² Complex wave magnetic field

Ray/Beam tracing field data

-		•	
RRAY	$R(\ell)$	m	R of ray at length ℓ
ZRAY	$Z(\ell)$	m	Z of ray at length ℓ
PRAY	$\phi(\ell)$	rad	ϕ of ray at length ℓ
CERAY	$E(\ell)$	V/m	Wave electric field at length ℓ
PWRAY	$\pmb{P}(\ell)$	W	Wave power at length ℓ
DRAY	$d(\ell)$	m	Beam radius at length ℓ
VRAY	$v(\ell)$	1/m	Beam curvature at length ℓ

0

Number of particle species

Atomic mass

Charge number

Number density

Temperature

Charge state number

Toroidal rotation velocity

Local dielectric tensor

momentum distribution at $\theta =$

Geometrical Optics: TASK/WR

• Ray Tracing: 6 equations

 \circ Ray position r_0 , wave number k^0

- Beam Tracing: 18 equations
 - **Beam shape** : Weber function (Hermite polynomial: H_n)

$$E(\mathbf{r}) = \operatorname{Re}\left[\sum_{mn} C_{mn}(\delta^{2}\mathbf{r})\mathbf{e}_{mn}(\delta^{2}\mathbf{r})H_{m}(\delta\xi_{1})H_{n}(\delta\xi_{2})\operatorname{e}^{\operatorname{i}s(\mathbf{r})-\phi(\mathbf{r})}\right]$$

Amplitude : C_{mn} , Polarization : \mathbf{e}_{mn} , Phase : $s(\mathbf{r}) + \operatorname{i}\phi(\mathbf{r})$
 $s(\mathbf{r}) = s_{0}(\tau) + k_{\alpha}^{0}(\tau)[r^{\alpha} - r_{0}^{\alpha}(\tau)] + \frac{1}{2}s_{\alpha\beta}[r^{\alpha} - r_{0}^{\alpha}(\tau)][r^{\beta} - r_{0}^{\beta}(\tau)]$

$$\phi(\tau) = \frac{1}{2}\phi_{\alpha\beta}[r^{\alpha} - r_0^{\alpha}(\tau)][r^{\beta} - r_0^{\beta}(\tau)]$$

- Curvature radius of equi-phase surface:

$$R_{\alpha} = 1/\lambda s_{\alpha\alpha}$$

— **Beam radius**: $d_{\alpha} = \sqrt{2/\phi_{\alpha\alpha}}$

 \circ Gaussian beam : case with m = 0, n = 0

Analysis of ECCD by TASK Code

- magnetic surface coordinate: (ψ, θ, φ)
- Boundary-value problem of Maxwell's equation

$$\nabla \times \nabla \times E = \frac{\omega^2}{c^2} \overleftrightarrow{\epsilon} \cdot E + \mathrm{i} \,\omega \mu_0 \boldsymbol{j}_{\mathrm{ext}}$$

- Kinetic **dielectric tensor**: $\overleftarrow{\epsilon}$
 - Wave-particle resonance: $Z[(\omega n\omega_c)/k_{\parallel}v_{th}]$ • Fast ion: Drift-kinetic

$$\left[\frac{\partial}{\partial t} + v_{\parallel} \nabla_{\parallel} + (\boldsymbol{v}_{\rm d} + \boldsymbol{v}_{\rm E}) \cdot \boldsymbol{\nabla} + \frac{e_{\alpha}}{m_{\alpha}} (v_{\parallel} E_{\parallel} + \boldsymbol{v}_{\rm d} \cdot \boldsymbol{E}) \frac{\partial}{\partial \varepsilon}\right] f_{\alpha} = 0$$

Poloidal and toroidal mode expansion

\circ Accurate estimation of $k_{||}$

• Eigenmode analysis: **Complex eigen frequency** which maximize wave amplitude for fixed excitation proportional to electron density

ICRF Waves in Toroidal Helical Plasmas (Cold Plasma Model)

LHD ($B_0 = 3 \text{ T}, R_0 = 3.8 \text{ m}$)

 $f = 42 \text{ MHz}, n_{\phi 0} = 20, n_{e0} = 3 \times 10^{19} \text{ m}^{-3}, n_{\text{H}}/(n_{\text{He}} + n_{\text{H}}) = 0.235,$

 $N_{\text{rmax}} = 100, N_{\theta \text{max}} = 16 \ (m = -7...7), N_{\phi \text{max}} = 4 \ (n = 10, 20, 30)$

Wave electric field (imaginary part of poloidal component)

Power deposition profile (minority ion)

Fokker-Planck equation

for velocity distribution function $f(p_{\parallel}, p_{\perp}, \psi, t)$

$$\frac{\partial f}{\partial t} = E(f) + C(f) + Q(f) + L(f)$$

- $\circ E(f)$: Acceleration term due to DC electric field
- $\circ C(f)$: Coulomb collision term
- $\circ Q(f)$: Quasi-linear term due to wave-particle resonance
- \circ *L*(*f*): Spatial diffusion term
- Bounce-averaged: Trapped particle effect, zero banana width
- **Relativistic**: momentum *p*, weakly relativistic collision term
- Nonlinear collision: momentum or energy conservation
- Three-dimensional: spatial diffusion (neoclassical, turbulent)

Wave Dispersion Analysis : TASK/DP

- Various Models of Dielectric Tensor $\overleftarrow{\epsilon}(\omega, k; r)$:
 - Resistive MHD model
 - Collisional cold plasma model
 - Collisional warm plasma model
 - Kinetic plasma model (Maxwellian, non-relativistic)
 - \circ Kinetic plasma model (Arbitrary f(v), relativistic)
 - Gyro-kinetic plasma model (Maxwellian)
 - Gyro-kinetic plasma model (Arbitrary f(v), non-relativistic)
- Arbitrary f(v):
 - Relativistic Maxwellian
 - Output of TASK/FP

Self-Consistent Wave Analysis with Modified f(v)

Modification of velocity distribution from Maxwellian

- Absorption of ICRF waves in the presence of energetic ions
- Current drive efficiency of LHCD
- NTM controllability of ECCD (absorption width)
- Self-consistent wave analysis including modification of $f(\mathbf{v})$

Code Development in TASK

- \circ Ray tracing analysis with arbitrary f(v): Already done
- \circ Full wave analysis with arbitrary f(v): **Completed**
- Fokker-Plank analysis of ray tracing results: Already done
- Fokker-Plank analysis of full wave results: Almost competed
- Self-consistent iterative analysis: Preliminary

• Tail formation by ICRF minority heating

r/a

Integrated Analysis of AE in ITER Plasma

Combined Analysis

- Equilibrium: TASK/EQ
- Transport: TASK/TR
 - Turbulent transport model: CDBM
 - Neoclassical transport model: NCLASS (Houlberg)
 - Heating and current profile: given profile
- Full wave analysis: TASK/WM

Stability analysis

- \circ Standard H-mode operation: $I_p = 15$ MA, $Q \sim 10$
- \circ Hybrid operation: $I_p = 12 \text{ MA}$, flat q profile above 1
- \circ Steady-state operation: $I_p = 9 \text{ MA}$, reversed shear

Diffusive Transport Analysis: TASK/TR

- Transport Equation Based on Gradient-Flux Relation
 - Multi thermal species: e.g. Electron, D, T, He
 - Density, thermal energy, (toroidal rotation)
 - \circ Two beam components: Beam ion, Energetic α
 - Density, toroidal rotation
 - Neutral: Two component (cold and hot), Diffusion equation
 Impurity: Thermal species or fixed profile

• Transport Model

- Neoclassical: Wilson, Hinton & Hazeltine, Sauter, NCLASS
- **Turbulent**: CDBM (current diffusive ballooning mode), GLF23 (V1.61), IFS/PPPL, Weiland
- Interface to Experimental Data

• UFILE (ITPA profile DB)

Standard H-mode Operation

AE in Standard H-mode Operation

-0.8

Mode structure (n = 1)^{0.8} ^{0.4} ^{0.0} ^{-0.4}

0.0 0.5 1.0 1.5 2.0 r $f_r = 95.95 \text{ kHz}$ $f_i = -1.95 \text{ kHz}$

Stabilization due to q = 1

Full Wave Analysis of RWM (TASK/WA)

• Full wave analysis: solving Maxwell's equation

$$\nabla \times \nabla \times E = \frac{\omega^2}{c^2} \overleftrightarrow{\epsilon} \cdot E + \mathrm{i} \, \omega \mu_0 j_{\mathrm{ext}}$$

- Resistive MHD dielectric tensor including diamagnetic flow
- Ferromagnetic Resistive wall

Access to TASK code

Required Environment

- Unix-like OS (Linux, Mac OSX, ···)
- X-window system
- Fortran95 compiler

Source code

- Stable version: Web site (http://bpsi.nucleng.kyoto-u.ac.jp/task/)
- Latest version: CVS tree (Read only) [password required]
- **Developer**: CVS tree (R/W) [account required]

User support

- Uniform user interface
- English guidebook in preparation: by the end of 2006

Summary

- We are developing **TASK** code as a reference core code for burning plasma simulation based on transport analysis.
- **Standard dataset** and **module interface** are still under discussion. They will be implemented by the end of this summer.
- The integrated code TASK is open source and easy to use, though more modules are required.

• Future work for TASK

- Improvement of the modules: Full modular structure, Fortran95
- Improvement of the models: Edge plasma, Sawtooth, ...
- Systematic comparison with experimental data
- Integrated simulation with other code: Stability, Peripheral, ...