US-JPN RF Heating Physics Workshop Nara-Ken New Public Hall, Nara, Japan 2006/09/30

Advanced Full Wave Analyses in Tokamak Plasmas

A. Fukuyama

Department of Nuclear Engineering, Kyoto University

Outline

- Present Status of TASK Code
- Full wave analysis of ECH in small ST
- Self-consistent analysis of wave heating and current drive
- Eigenmode analysis
- Summary
- Future Plan

TASK Code

• Transport Analysing System for TokamaK

• Features

- A Core of Integrated Modeling Code in BPSI
 - Modular structure, Unified Standard data interface
- Various Heating and Current Drive Scheme
 - EC, LH, IC, AW, (NB)
- High Portability
 - Most of Library Routines Included
- **Development using CVS** (Concurrent Version System)
 - Open Source (V0.93 http://bpsi.nucleng.kyoto-u.ac.jp/task/)
- Parallel Processing using MPI Library
- **Extension to Toroidal Helical Plasmas**

Modules of TASK

EQ	2D Equilibrium	Fixed/Free boundary, Toroidal rotation
TR	1D Transport	Diffusive transport, Transport models
WR	3D Geometr. Optics	EC, LH: Ray tracing, Beam tracing
WM	3D Full Wave	IC, AW: Antenna excitation, Eigen mode
FP	3D Fokker-Planck	Relativistic, Bounce-averaged
DP	Wave Dispersion	Local dielectric tensor, Arbitrary $f(v)$
PL	Data Interface	Data conversion, Profile database
LIB	Libraries	

under development

TXTransport analysis including plasma rotation and E_r **WA**Global linear stability analysis

in collaboration

TOPICS-EQU Free-boundary equilibrium: Azumi (JAEA)

Modular Structure of TASK

Wave Dispersion Analysis : TASK/DP

- Various Models of Dielectric Tensor $\overleftarrow{\epsilon}(\omega, \mathbf{k}; \mathbf{r})$:
 - Resistive MHD model
 - Collisional cold plasma model
 - Collisional warm plasma model
 - Kinetic plasma model (Maxwellian, non-relativistic)
 - Kinetic plasma model (Arbitrary f(v), relativistic)
 - Gyro-kinetic plasma model (Maxwellian)
- Numerical Integration in momentum space: Arbitrary f(v)
 - Relativistic Maxwellian
 - Output of TASK/FP: Fokker-Planck code

Relativistic Dielectric Tensor

• Dielectric Tensor:
$$\omega_p = \sqrt{n_s e_s^2 / m_s \epsilon_0}, \ \omega_c = e_s B / m_s$$

 $\epsilon_{ij} = \delta_{ij} + \frac{\omega_p^2}{\omega^2} \int \mathrm{d}\boldsymbol{p} \, p_\perp \sum_n \Pi_{in}^* \Pi_{jn} L_n f_0$
 $+ \frac{\omega_p^2}{\omega^2} \delta_{3i} \delta_{3j} \int \mathrm{d}\boldsymbol{p} \, \frac{p_{\parallel}}{\gamma} \left[\frac{\partial f_0}{\partial p_{\parallel}} - \frac{p_{\parallel}}{p_\perp} \frac{\partial f_0}{\partial p_\perp} \right]$

• Factor Π_{in} : $\xi \equiv k_{\perp} p_{\perp} / m \omega_c$

$$\Pi_{1n} \equiv \frac{n}{\xi} J_n(\xi) \qquad \Pi_{2n} \equiv i J'_n(\xi) \qquad \Pi_{3n} \equiv \frac{p_{\parallel}}{p_{\perp}} J_n(\xi)$$

• **Operator** L_n :

$$L_{n} \equiv \frac{1}{\gamma - n\frac{\omega_{c}}{\omega} - \frac{k_{\parallel}p_{\parallel}}{m\omega}} \left[\left(1 - \frac{k_{\parallel}p_{\parallel}}{m\omega\gamma} \right) \frac{\partial}{\partial p_{\perp}} + \frac{k_{\parallel}p_{\perp}}{m\omega\gamma} \frac{\partial}{\partial p_{\parallel}} \right]$$

- magnetic surface coordinate: (ψ, θ, φ)
- Boundary-value problem of Maxwell's equation

$$\nabla \times \nabla \times E = \frac{\omega^2}{c^2} \overleftrightarrow{\epsilon} \cdot E + \mathrm{i} \,\omega \mu_0 \mathbf{j}_{\mathrm{ext}}$$

- Kinetic **dielectric tensor**: $\overleftarrow{\epsilon}$
 - Wave-particle resonance: $Z[(\omega n\omega_c)/k_{\parallel}v_{th}]$
 - Fast ion: Drift-kinetic

$$\left[\frac{\partial}{\partial t} + v_{\parallel} \nabla_{\parallel} + (\boldsymbol{v}_{\rm d} + \boldsymbol{v}_{\rm E}) \cdot \boldsymbol{\nabla} + \frac{e_{\alpha}}{m_{\alpha}} (v_{\parallel} E_{\parallel} + \boldsymbol{v}_{\rm d} \cdot \boldsymbol{E}) \frac{\partial}{\partial \varepsilon}\right] f_{\alpha} = 0$$

Poloidal and toroidal mode expansion

\circ Accurate estimation of $k_{||}$

• Eigenmode analysis: **Complex eigen frequency** which maximize wave amplitude for fixed excitation proportional to electron density

Full Wave Analysis of ECH in a Small-Size ST

- Small-size spherical tokamak: LATE (Kyoto University)
 - ° T. Maekawa et al., IAEA-CN-116/EX/P4-27 (Vilamoura, Portuga, 2004) ° R = 0.22 m, a = 0.16 m, $B_0 = 0.0552$ T, $I_p = 6.25$ kA, $\kappa = 1.5$

 \circ *f* = 2.8 GHz, Toroidal mode number *n* = 12, Extraordinary mode

Density Dependence of ECW Propagation

Self-Consistent Wave Analysis with Modified f(v)

Modification of velocity distribution from Maxwellian

- Absorption of ICRF waves in the presence of energetic ions
- Current drive efficiency of LHCD
- NTM controllability of ECCD (absorption width)
- Self-consistent wave analysis including modification of f(v)

Fokker-Planck equation

for velocity distribution function $f(p_{\parallel}, p_{\perp}, \psi, t)$

$$\frac{\partial f}{\partial t} = E(f) + C(f) + Q(f) + L(f)$$

- $\circ E(f)$: Acceleration term due to DC electric field
- $\circ C(f)$: Coulomb collision term
- $\circ Q(f)$: Quasi-linear term due to wave-particle resonance
- \circ *L*(*f*): Spatial diffusion term
- Bounce-averaged: Trapped particle effect, zero banana width
- Relativistic: momentum *p*, weakly relativistic collision term
- Nonlinear collision: momentum or energy conservation
- Three-dimensional: spatial diffusion (neoclassical, turbulent)

Code Development in TASK

- \circ Ray tracing analysis with arbitrary f(v): Already done
- \circ Full wave analysis with arbitrary f(v): **Completed**
- Fokker-Plank analysis of ray tracing results: Already done
- Fokker-Plank analysis of full wave results: Almost competed
- Self-consistent iterative analysis: Preliminary

Tail formation by ICRF minority heating

Integrated Analysis of AE in ITER Plasma

- Combined Analysis
 - Equilibrium: TASK/EQ
 - Transport: TASK/TR
 - Turbulent transport model: CDBM
 - Neoclassical transport model: NCLASS (Houlberg)
 - Heating and current profile: given profile
 - Full wave analysis: TASK/WM

Stability analysis

- \circ Standard H-mode operation: $I_p = 15$ MA, $Q \sim 10$
- \circ Hybrid operation: $I_p = 12 \text{ MA}$, flat q profile above 1
- \circ Steady-state operation: $I_p = 9 \text{ MA}$, reversed shear

Standard H-mode Operation

AE in Standard H-mode Operation

Mode structure (n = 1)0.8 E_{θ} m=-1 0.4 0.0 -0.4 -0.8 0.0 0.5 1.0 1.5 2.0 $f_r = 95.95 \,\text{kHz}$ $f_i = -1.95 \, \text{kHz}$ Stabilization due to q = 1

Full Wave Analysis of RWM (TASK/WA)

• Full wave analysis: solving Maxwell's equation

$$\nabla \times \nabla \times E = \frac{\omega^2}{c^2} \overleftrightarrow{\epsilon} \cdot E + \mathrm{i} \,\omega \mu_0 \mathbf{j}_{\mathrm{ext}}$$

- Resistive MHD dielectric tensor including diamagnetic flow
- Ferromagnetic Resistive wall

Summary (1)

- Several improvement of the TASK code for full wave analysis of wave heating and current drive is under way.
- Full wave analysis of EC wave propagation in a small-size ST
 - Tunneling through the cutoff layer and absorption on the upper hybrid layer were described.
 - The description of electron Bernstein waves requires to include FLR effects in TASK/WM.
- Formulation of 2D integro-differential full wave analysis including FLR effects: Next talk

Summary (2)

- Self-consistent analysis including modification of velocity distribution
 - Full wave analysis with arbitrary velocity distribution was completed.
 - Fokker-Planck analysis uses wave fields calculated by the full wave module.
 - Coupling of the full-wave and Fokker-Planck modules is almost completed.

Future Plan of TASK Code

Future Plan of Integrated Full Wave Analysis

- **DP**: dielectric tensor
 - 2D integral operator for Maxwewllean: under way
 - \circ **2D integral operator for arbitrary** f(v): planned
 - \circ Gyrokinetic arbitrary f(v): planned
- WM: full wave analysis
 - Update to FEM version: under way
 - Waveguide excitation: under way
- FP: Fokker-Planck analysis
 - Integral quasi-linear operator: formulation
 - Radial diffusion: Re-installation