IAEA Fusion Energy Conference Chengdu, China 2006/10/20

Integrated Full Wave Analysis of RF Heating and Current Drive in Toroidal Plasmas

A. Fukuyama, S. Murakami, A. Sonoda, M. Honda// Department of Nuclear Engineering, Kyoto University, Kyoto 606-8501, Japan

Outline

- Present Status of TASK Code
- Full wave analysis of ECH in small ST
- Self-consistent analysis of wave heating and current drive
- Integral formulation of full wave analysis
- Summary

Motivation

- Full wave analysis is required in various situations in tokamaks and helical systems
 - \circ **lon cyclotron wave** : wavelength \sim inhomogeneous scale length
 - Lower hybrid wave : effect of multiple reflections
 - Electron cyclotron wave : tunneling through a cutoff layer
- Further extension is required for integrated analysis
 - Consistent analysis including the modification of $f_0(v)$
 - Application to high-frequency waves
 - Precise analysis including the FLR effects
- Integrated analysis using the TASK code

TASK Code

• Transport Analysing System for TokamaK

• Features

- A Core of Integrated Modeling Code in BPSI
 - Modular structure, Unified Standard data interface
- Various Heating and Current Drive Scheme
 - EC, LH, IC, AW, (NB)
- High Portability
 - Most of Library Routines Included
- **Development using CVS** (Concurrent Version System)
 - Open Source (V0.93 http://bpsi.nucleng.kyoto-u.ac.jp/task/)
- Parallel Processing using MPI Library
- **Extension to Toroidal Helical Plasmas**

Modules of TASK

EQ	2D Equilibrium	Fixed/Free boundary, Toroidal rotation
TR	1D Transport	Diffusive transport, Transport models
WR	3D Geometr. Optics	EC, LH: Ray tracing, Beam tracing
WM	3D Full Wave	IC, AW: Antenna excitation, Eigen mode
FP	3D Fokker-Planck	Relativistic, Bounce-averaged
DP	Wave Dispersion	Local dielectric tensor, Arbitrary $f(v)$
PL	Data Interface	Data conversion, Profile database
LIB	Libraries	

under development

TXTransport analysis including plasma rotation and E_r **WA**Global linear stability analysis

in collaboration

TOPICS-EQU Free-boundary equilibrium: Azumi (JAEA)

Modular Structure of TASK

Wave Dispersion Analysis : TASK/DP

- Various Models of Dielectric Tensor $\overleftarrow{\epsilon}(\omega, \mathbf{k}; \mathbf{r})$:
 - Resistive MHD model
 - Collisional cold plasma model
 - Collisional warm plasma model
 - Kinetic plasma model (Maxwellian, non-relativistic)
 - Kinetic plasma model (Arbitrary f(v), relativistic)
 - Gyro-kinetic plasma model (Maxwellian)
- Numerical Integration in momentum space: Arbitrary f(v)
 - Relativistic Maxwellian
 - Output of TASK/FP: Fokker-Planck code

- magnetic surface coordinate: (ψ, θ, φ)
- Boundary-value problem of Maxwell's equation

$$\nabla \times \nabla \times E = \frac{\omega^2}{c^2} \overleftrightarrow{\epsilon} \cdot E + \mathrm{i} \,\omega \mu_0 \mathbf{j}_{\mathrm{ext}}$$

- Kinetic **dielectric tensor**: $\overleftarrow{\epsilon}$
 - Wave-particle resonance: $Z[(\omega n\omega_c)/k_{\parallel}v_{th}]$
 - Fast ion: Drift-kinetic

$$\left[\frac{\partial}{\partial t} + v_{\parallel} \nabla_{\parallel} + (\boldsymbol{v}_{\rm d} + \boldsymbol{v}_{\rm E}) \cdot \boldsymbol{\nabla} + \frac{e_{\alpha}}{m_{\alpha}} (v_{\parallel} E_{\parallel} + \boldsymbol{v}_{\rm d} \cdot \boldsymbol{E}) \frac{\partial}{\partial \varepsilon}\right] f_{\alpha} = 0$$

Poloidal and toroidal mode expansion

\circ Accurate estimation of $k_{||}$

• Eigenmode analysis: **Complex eigen frequency** which maximize wave amplitude for fixed excitation proportional to electron density

Full Wave Analysis of ECH in a Small-Size ST

- Small-size spherical tokamak: LATE (Kyoto University)
 - ° T. Maekawa et al., IAEA-CN-116/EX/P4-27 (Vilamoura, Portugal, 2004) ° R = 0.22 m, a = 0.16 m, $B_0 = 0.0552$ T, $I_p = 6.25$ kA, $\kappa = 1.5$

 \circ *f* = 2.8 GHz, Toroidal mode number *n* = 12, Extraordinary mode

Density Dependence of ECW Propagation

Fokker-Planck equation

for velocity distribution function $f(p_{\parallel}, p_{\perp}, \psi, t)$

$$\frac{\partial f}{\partial t} = E(f) + C(f) + Q(f) + L(f)$$

- $\circ E(f)$: Acceleration term due to DC electric field
- $\circ C(f)$: Coulomb collision term
- $\circ Q(f)$: Quasi-linear term due to wave-particle resonance
- \circ *L*(*f*): Spatial diffusion term
- Bounce-averaged: Trapped particle effect, zero banana width
- Relativistic: momentum *p*, weakly relativistic collision term
- Nonlinear collision: momentum or energy conservation
- Three-dimensional: spatial diffusion (neoclassical, turbulent)

Self-Consistent Wave Analysis with Modified f(v)

Modification of velocity distribution from Maxwellian

- Absorption of ICRF waves in the presence of energetic ions
- Current drive efficiency of LHCD
- NTM controllability of ECCD (absorption width)
- Self-consistent wave analysis including modification of f(v)

Code Development in TASK

- \circ Ray tracing analysis with arbitrary f(v): Already done
- \circ Full wave analysis with arbitrary f(v): **Completed**
- Fokker-Plank analysis of ray tracing results: Already done
- Fokker-Plank analysis of full wave results: Almost competed
- Self-consistent iterative analysis: Preliminary

Tail formation by ICRF minority heating

FLR Effects in Full Waves Analyses

- Several approaches to describe the FLR effects.
- Differential operators: $k_{\perp}\rho \rightarrow i\rho\partial/\partial r_{\perp}$

• This approach cannot be applied to the case $k_{\perp}\rho \gtrsim 1$. • Extension to the third and higher harmonics is difficult.

- Spectral method: Fourier transform in inhomogeneous direction
 - This approach can be applied to the case $k_{\perp}\rho > 1$.
 - All the wave field spectra are coupled with each other.
 - Solving a dense matrix equation requires large computer resources.
- Integral operators: $\int \epsilon(x x') \cdot E(x') dx'$
 - This approach can be applied to the case $k_{\perp}\rho > 1$
 - Correlations are localized within several Larmor radii
 - Necessary to solve a large band matrix

Full Wave Analysis Using an Integral Form of Dielectric Tensor

• Maxwell's equation:

$$\nabla \times \nabla \times \boldsymbol{E}(\boldsymbol{r}) + \frac{\omega^2}{c^2} \int \overleftarrow{\epsilon}(\boldsymbol{r}, \boldsymbol{r}') \cdot \boldsymbol{E}(\boldsymbol{r}') d\boldsymbol{r} = \mu_0 \boldsymbol{J}_{ext}(\boldsymbol{r})$$

• Integral form of dielectric tensor: $\overleftarrow{\epsilon}(\mathbf{r}, \mathbf{r'})$

Integration along the unperturbed cyclotron orbit

- **1D analysis in tokamaks** (in the direction of major radius)
 - \circ To confirm the applicability of an integral form of dielectric tensor
 - \circ Another formulation in the lowest order of ρ/L
 - Sauter O, Vaclavik J, Nucl. Fusion **32** (1992) 1455.
- 2D analysis in tokamaks

• In more realistic configurations

ICRF minoring heating without energetic particles ($n_{\rm H}/n_{\rm D} = 0.1$)

Differential form

Integral form

Differential approach is applicable

One-Dimensional Analysis (2)

Differential approach cannot be applied since $k_{\perp}\rho_i > 1$.

ICRF minoring heating with α -particles ($n_D : n_{He} = 0.96 : 0.02$)

Differential form

Integral form

1,20

Absorption by α may be overestimated by differential approach.

Coordinates

- Magnetic coordinate system: (ψ, χ, ζ)
- Local Cartesian coordinate system: (s, p, h)
- Fourier expansion: poloidal and toroidal mode numbers, *m*, *n*
- Perturbed current

$$\boldsymbol{J}(\boldsymbol{r},t) = -\frac{q}{m} \int \mathrm{d}\boldsymbol{v} \, q \boldsymbol{v} \, \int_{-\infty}^{\infty} \mathrm{d}t' \left[\boldsymbol{E}(\boldsymbol{r}',t') + \boldsymbol{v}' \times \boldsymbol{B}(\boldsymbol{r}',t') \right] \cdot \frac{\partial f_0(\boldsymbol{v}')}{\partial \boldsymbol{v}'}$$

• The time evolution of χ and ζ due to gyro-motion

$$\begin{cases} \chi(t-\tau) = \chi(t) + \frac{\partial \chi}{\partial s} \frac{v_{\perp}}{\omega_{c}} \left\{ \cos(\omega_{c}\tau + \theta_{0}) - \cos\theta_{0} \right\} + \frac{\partial \chi}{\partial p} \frac{v_{\perp}}{\omega_{c}} \left\{ \sin(\omega_{c}\tau + \theta_{0}) - \sin\theta_{0} \right\} - \frac{\partial \chi}{\partial h} v_{\parallel}\tau \\ \zeta(t-\tau) = \zeta(t) + \frac{\partial \zeta}{\partial s} \frac{v_{\perp}}{\omega_{c}} \left\{ \cos(\omega_{c}\tau + \theta_{0}) - \cos\theta_{0} \right\} + \frac{\partial \zeta}{\partial p} \frac{v_{\perp}}{\omega_{c}} \left\{ \sin(\omega_{c}\tau + \theta_{0}) - \sin\theta_{0} \right\} - \frac{\partial \zeta}{\partial h} v_{\parallel}\tau \end{cases}$$

• Transformation of Integral Variables

• Transformation from the velocity space variables (v_{\perp}, θ_0) to the particle position *s'* and the guiding center position *s*₀.

• Jacobian:
$$J = \frac{\partial(v_{\perp}, \theta_0)}{\partial(s', s_0)} = -\frac{\omega_c^2}{v_{\perp} \sin \omega_c \tau}$$
.

 \circ Express v_{\perp} and θ_0 by s' and s_0 using $\tau = t - t'$

$$v_{\perp}^{2} = \left(\frac{s+s'}{2} - s_{0}\right)^{2} \frac{\omega_{c}^{2}}{\cos^{2}\frac{1}{2}\omega_{c}\tau} + \left(\frac{s-s'}{2}\right)^{2} \frac{\omega_{c}^{2}}{\sin^{2}\frac{1}{2}\omega_{c}\tau} \equiv V_{0}^{2}$$
$$v_{\perp} \sin\theta_{0} = \frac{\omega_{c}}{v_{\perp}}\frac{s-s'}{2}\frac{1}{\tan\frac{1}{2}\omega_{c}\tau} - \frac{\omega_{c}}{v_{\perp}}\left(\frac{s+s'}{2} - s_{0}\right)\tan\frac{1}{2}\omega_{c}\tau \equiv V_{1}$$
$$v_{\perp} \sin(\omega_{c}\tau + \theta_{0}) = \frac{\omega_{c}}{v_{\perp}}\frac{s-s'}{2}\frac{1}{\tan\frac{1}{2}\omega_{c}\tau} + \frac{\omega_{c}}{v_{\perp}}\left(\frac{s+s'}{2} - s_{0}\right)\tan\frac{1}{2}\omega_{c}\tau \equiv V_{2}$$

Maxwell distribution

 \circ Anisotropic Maxwell distribution with T_{\perp} and T_{\parallel} :

$$f_0(s_0, \boldsymbol{v}) = n_0 \left(\frac{m}{2\pi T_{\perp}}\right)^{3/2} \left(\frac{T_{\perp}}{T_{\parallel}}\right)^{1/2} \exp\left[-\frac{v_{\perp}^2}{2v_{T_{\perp}}^2} - \frac{v_{\parallel}^2}{2v_{T_{\parallel}}^2}\right]$$

• Integration over τ

 $^{\rm o}$ Integral in time calculated by the Fourier series expansion with cyclotron period, $2\pi/\omega_{\rm c}$

• Integration over v_{\parallel}

 Interaction between wave and particles along the magnetic field lines described by the plasma dispersion function. • Induced current:

$$\overleftrightarrow{\mu}^{-1} \cdot \begin{pmatrix} J_1^{mn}(\psi) \\ J_2^{mn}(\psi) \\ J_3^{mn}(\psi) \end{pmatrix} = \int du' \int du_0 \,\,\overleftrightarrow{\sigma}(u, u', u_0) \cdot \begin{pmatrix} E_1^{m'n}(\psi) \\ E_2^{m'n}(\psi) \\ E_3^{m'n}(\psi) \end{pmatrix}$$

• Electrical conductivity:

$$\overleftrightarrow{\sigma}(u,u',u_0) = -i\left(\frac{1}{2\pi}\right)^{\frac{7}{2}} n_0 \frac{q^2}{m} \sum_{m'n'} \sum_l \int_0^{2\pi} \mathrm{d}\chi \int_0^{2\pi} \mathrm{d}\zeta \exp i\left\{(m'-m)\chi + (n'-n)\zeta\right\} \overleftrightarrow{H}(u,u',\chi)$$

• Matrix coefficients:

$$\begin{split} H_{1i} &= \left(Q_{3}\mu_{1i}^{-1} - u'Q_{1}\mu_{2i}^{-1}\right)\frac{\sqrt{\pi}}{k_{\parallel}v_{T_{\parallel}}}Z(\eta_{l}) + \left[-\frac{Q_{1}v_{T_{\perp}}}{v_{T_{\parallel}}^{2}}\mu_{3i}^{-1} + \left(1 - \frac{v_{T_{\perp}}^{2}}{v_{T_{\parallel}}^{2}}\right)\left\{Q_{3}\kappa_{2i} + Q_{1}u'\kappa_{1i}\right\}\right]\sqrt{\frac{\pi}{2}}\frac{1}{k_{\parallel}}Z'(\eta_{l}) \\ H_{2i} &= \left(-Q_{2}u\mu_{1i}^{-1} + Q_{0}uu'\mu_{2i}^{-1}\right)\frac{\sqrt{\pi}}{k_{\parallel}v_{T_{\parallel}}}Z(\eta_{l}) + \left[\frac{Q_{0}uv_{T_{\perp}}}{v_{T_{\parallel}}^{2}}\mu_{3i}^{-1} - \left(1 - \frac{v_{T_{\perp}}^{2}}{v_{T_{\parallel}}^{2}}\right)u\left\{Q_{2}\kappa_{2i} + Q_{0}u'\kappa_{1i}\right\}\right]\sqrt{\frac{\pi}{2}}\frac{1}{k_{\parallel}}Z'(\eta_{l}) \\ H_{3i} &= \left(-\frac{Q_{2}}{v_{T_{\perp}}}\mu_{1i}^{-1} + \frac{Q_{0}u'}{v_{T_{\perp}}}\mu_{2i}^{-1}\right)\sqrt{\frac{\pi}{2}}\frac{1}{k_{\parallel}}Z'(\eta_{l}) + \left[-\frac{Q_{0}}{v_{T_{\parallel}}}\mu_{3i}^{-1} + \frac{v_{T_{\parallel}}}{v_{T_{\perp}}}\left(1 - \frac{v_{T_{\perp}}^{2}}{v_{T_{\parallel}}^{2}}\right)\left\{Q_{2}\kappa_{2i} + Q_{0}u'\kappa_{1i}\right\}\right]\frac{\sqrt{\pi}}{k_{\parallel}}\eta_{l}Z'(\eta_{l}) \\ H_{3i} &= \left(-\frac{Q_{2}}{v_{T_{\perp}}}\mu_{1i}^{-1} + \frac{Q_{0}u'}{v_{T_{\perp}}}\mu_{2i}^{-1}\right)\sqrt{\frac{\pi}{2}}\frac{1}{k_{\parallel}}Z'(\eta_{l}) + \left[-\frac{Q_{0}}{v_{T_{\parallel}}}\mu_{3i}^{-1} + \frac{v_{T_{\parallel}}}{v_{T_{\perp}}}\left(1 - \frac{v_{T_{\perp}}^{2}}{v_{T_{\parallel}}^{2}}\right)\left\{Q_{2}\kappa_{2i} + Q_{0}u'\kappa_{1i}\right\}\right]\frac{\sqrt{\pi}}{k_{\parallel}}\eta_{l}Z'(\eta_{l}) \\ H_{3i} &= \left(-\frac{Q_{2}}{v_{T_{\perp}}}\mu_{1i}^{-1} + \frac{Q_{0}u'}{v_{T_{\perp}}}\mu_{2i}^{-1}\right)\sqrt{\frac{\pi}{2}}\frac{1}{k_{\parallel}}Z'(\eta_{l}) + \left[-\frac{Q_{0}}{v_{T_{\parallel}}}\mu_{3i}^{-1} + \frac{v_{T_{\parallel}}}{v_{T_{\perp}}}\left(1 - \frac{v_{T_{\perp}}^{2}}{v_{T_{\parallel}}^{2}}\right)\left\{Q_{2}\kappa_{2i} + Q_{0}u'\kappa_{1i}\right\}\right]\frac{\sqrt{\pi}}{k_{\parallel}}\eta_{l}Z'(\eta_{l}) \\ H_{3i} &= \left(-\frac{Q_{2}}{v_{T_{\perp}}}\mu_{1i}^{-1} + \frac{Q_{0}u'}{v_{T_{\perp}}}\mu_{2i}^{-1}\right)\sqrt{\frac{\pi}{2}}\frac{1}{k_{\parallel}}Z'(\eta_{l}) + \left[-\frac{Q_{0}}{v_{T_{\parallel}}}\mu_{3i}^{-1} + \frac{v_{T_{\parallel}}}{v_{T_{\parallel}}}}\left(1 - \frac{v_{T_{\perp}}^{2}}{v_{T_{\parallel}}}\right)\left\{Q_{2}\kappa_{2i} + Q_{0}u'\kappa_{1i}\right\}\right]\frac{\sqrt{\pi}}{k_{\parallel}}\eta_{l}Z'(\eta_{l}) \\ H_{3i} &= \left(-\frac{Q_{2}}{v_{T_{\perp}}}\mu_{1i}^{-1} + \frac{Q_{0}u'}{v_{T_{\perp}}}}\mu_{2i}\right)\sqrt{\frac{\pi}{2}}\frac{1}{k_{\parallel}}Z'(\eta_{l}) + \left(-\frac{Q_{0}}{v_{T_{\parallel}}}\mu_{2i}^{-1} + \frac{Q_{0}u'}{v_{T_{\parallel}}}\mu_{2i}\right)\left\{Q_{2}\kappa_{2i}\right\}\right\}$$

Kernel functions

$$\begin{aligned} & \mathcal{Q}_{\left\{\begin{array}{c}0\\1\\2\\3\end{array}\right\}}(u,u',\chi_0,l) = \int_0^{2\pi} d\lambda \frac{1}{|\sin\lambda|} \begin{cases} 1\\V_1\\V_2\\V_1V_2 \end{cases} \\ & \times \exp i \left[\frac{k_{\perp}v_{T_{\perp}}}{\omega_c} \left\{(V_2 - V_1)\cos\alpha - (u - u')\sin\alpha\right\} + l\lambda - \frac{V_0^2}{2}\right] \\ & V_0^2 = \left(\frac{u + u'}{2}\right)^2 \frac{1}{\cos^2\frac{1}{2}\lambda} + \left(\frac{u - u'}{2}\right)^2 \frac{1}{\sin^2\frac{1}{2}\lambda} \qquad \overleftarrow{h} = \frac{1}{J\omega} \begin{pmatrix} 0 & -n & m'\\n & 0 & i\frac{\partial}{\partial\psi}\\-m' & -i\frac{\partial}{\partial\psi} & 0 \end{pmatrix} \\ & V_1 = \frac{u - u'}{2} \frac{1}{\tan\frac{1}{2}\lambda} - \frac{u + u'}{2} \tan\frac{1}{2}\lambda \qquad u \equiv \frac{s - s_0}{v_{T_{\perp}}} \omega_c \\ & V_2 = \frac{u - u'}{2} \frac{1}{\tan\frac{1}{2}\lambda} + \frac{u + u'}{2} \tan\frac{1}{2}\lambda \qquad u' \equiv \frac{s' - s_0}{v_{T_{\perp}}} \omega_c \end{aligned}$$

where $\overleftarrow{\kappa} = \overleftarrow{\mu}^{-1} \cdot \overleftarrow{g} \cdot \overleftarrow{h}$, $\overleftarrow{\mu}$ is the transformation matrix for $(s, p, h) \rightarrow (\psi, \chi, \zeta)$, and \overleftarrow{g} is the metric tensor.

Consistent Formulation of Integral Full Wave Analysis

Analysis of wave propagation

• Dielectric tensor:

$$\nabla \times \nabla \times \boldsymbol{E}(\boldsymbol{r}) - \frac{\omega^2}{c^2} \int \mathrm{d}\boldsymbol{r}_0 \int \mathrm{d}\boldsymbol{r}' \, \frac{\boldsymbol{p}'}{m\gamma} \frac{\partial f_0(\boldsymbol{p}', \boldsymbol{r}_0)}{\partial \boldsymbol{p}'} \cdot \boldsymbol{K}_1(\boldsymbol{r}, \boldsymbol{r}', \boldsymbol{r}_0) \cdot \boldsymbol{E}(\boldsymbol{r}') = \mathrm{i}\,\omega\mu_0 \boldsymbol{j}_{\mathrm{ext}}$$

where r_0 is the gyrocenter position.

Analysis of modification of momentum distribution function
Quasi-linear operator

$$\frac{\partial f_0}{\partial t} + \left(\frac{\partial f_0}{\partial p}\right)_{\boldsymbol{E}} + \frac{\partial}{\partial p} \int d\boldsymbol{r} \int d\boldsymbol{r}' \boldsymbol{E}(\boldsymbol{r}) \, \boldsymbol{E}(\boldsymbol{r}') \cdot \boldsymbol{K}_2(\boldsymbol{r}, \boldsymbol{r}', \boldsymbol{r}_0) \cdot \frac{\partial f_0(\boldsymbol{p}', \boldsymbol{r}_0, t)}{\partial \boldsymbol{p}'} = \left(\frac{\partial f_0}{\partial \boldsymbol{p}}\right)_{\text{col}}$$

• The kernels K_1 and K_2 are closely related and localized in the region $|\mathbf{r} - \mathbf{r}_0| \leq \rho$ and $|\mathbf{r}' - \mathbf{r}_0| \leq \rho$.

Summary

- Toward an integrated full wave analysis in various range of frequencies, the integrated code, TASK, has been extended.
- Self-consistent analysis including modification of f(p)
 - Full wave analysis with arbitrary velocity distribution was completed. Fokker-Planck analysis uses wave fields calculated by the full wave module. Preliminary result of self-consistent analysis was shown.
- Full wave analysis of EC wave propagation in a small-size ST
 - Tunneling through the cutoff layer and absorption on the upper hybrid layer were described.
- 2D full wave analysis including the FLR effects:
 - 1D analysis elucidated the importance of the FLR effects. Formulation was extended to a 2D configuration. Implementation is under way.

Request for presentation

• Please sign up you name and affiliation:

(mail address from the List of Participants)

Future Plan of TASK Code

Future Plan of Integrated Full Wave Analysis

- **DP**: dielectric tensor
 - 2D integral operator for Maxwellian: under way
 - \circ **2D integral operator for arbitrary** f(v): planned
 - \circ Gyrokinetic arbitrary f(v): planned
- WM: full wave analysis
 - Update to FEM version: under way
 - Waveguide excitation: under way
- **FP**: Fokker-Planck analysis
 - Integral quasi-linear operator: formulation
 - Radial diffusion: Re-installation