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Motivation

• Full wave analysis is required in various situations in toka-
maks and helical systems

◦ Ion cyclotron wave : wavelength ∼ inhomogeneous scale length

◦ Lower hybrid wave : effect of multiple reflections

◦ Electron cyclotron wave : tunneling through a cutoff layer

• Further extension is required for integrated analysis
◦ Consistent analysis including the modification of f0(u)

◦ Application to high-frequency waves
◦ Precise analysis including the FLR effects

• Integrated analysis using the TASK code



TASK Code

• Transport Analysing System for TokamaK

• Features
◦ A Core of Integrated Modeling Code in BPSI
— Modular structure, Unified Standard data interface
◦ Various Heating and Current Drive Scheme
— EC, LH, IC, AW, (NB)
◦ High Portability
— Most of Library Routines Included
◦ Development using CVS (Concurrent Version System)

— Open Source (V0.93 http://bpsi.nucleng.kyoto-u.ac.jp/task/)
◦ Parallel Processing using MPI Library
◦ Extension to Toroidal Helical Plasmas



Modules of TASK

EQ 2D Equilibrium Fixed/Free boundary, Toroidal rotation

TR 1D Transport Diffusive transport, Transport models

WR 3D Geometr. Optics EC, LH: Ray tracing, Beam tracing

WM 3D Full Wave IC, AW: Antenna excitation, Eigen mode

FP 3D Fokker-Planck Relativistic, Bounce-averaged

DP Wave Dispersion Local dielectric tensor, Arbitrary f (u)

PL Data Interface Data conversion, Profile database

LIB Libraries

under development

TX Transport analysis including plasma rotation and Er
WA Global linear stability analysis

in collaboration
TOPICS-EQU Free-boundary equilibrium: Azumi (JAEA)



Modular Structure of TASK



Wave Dispersion Analysis : TASK/DP

• Various Models of Dielectric Tensor↔ε (ω, k; r):

◦ Resistive MHD model
◦ Collisional cold plasma model
◦ Collisional warm plasma model
◦ Kinetic plasma model (Maxwellian, non-relativistic)
◦ Kinetic plasma model (Arbitrary f (u), relativistic)
◦ Gyro-kinetic plasma model (Maxwellian)

• Numerical Integration in momentum space: Arbitrary f (u)

◦ Relativistic Maxwellian
◦ Output of TASK/FP: Fokker-Planck code



Full wave analysis: TASK/WM

•magnetic surface coordinate: (ψ, θ, ϕ)

• Boundary-value problem of Maxwell’s equation

∇ × ∇ × E = ω
2

c2
↔ε · E + iωμ0 jext

• Kinetic dielectric tensor: ↔ε
◦Wave-particle resonance: Z[(ω − nωc)/k‖vth]
◦ Fast ion: Drift-kinetic[

∂

∂t
+ v‖∇‖ + (ud + uE) · ∇ + eα

mα
(v‖E‖ + ud · E)

∂

∂ε

]
fα = 0

• Poloidal and toroidal mode expansion

◦ Accurate estimation of k‖
• Eigenmode analysis: Complex eigen frequency which maximize

wave amplitude for fixed excitation proportional to electron density



Full Wave Analysis of ECH in a Small-Size ST

• Small-size spherical tokamak: LATE (Kyoto University)
◦ T. Maekawa et al., IAEA-CN-116/EX/P4-27 (Vilamoura, Portugal, 2004)
◦ R = 0.22 m, a = 0.16 m, B0 = 0.0552 T, Ip = 6.25 kA, κ = 1.5
◦ f = 2.8 GHz, Toroidal mode number n = 12, Extraordinary mode

Penetration
through cutoff layer

=⇒ Propagation
along the UHR layer

=⇒ Collisional damping
near the UHR layer
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Density Dependence of ECW Propagation

LATE: 5 GHz, 0.072 T,N‖ = 0.5

1017 m−3 2 × 1017 m−3 3 × 1017 m−3 4 × 1017 m−3 5 × 1017 m−3



Fokker-Planck Analysis : TASK/FP

• Fokker-Planck equation
for velocity distribution function f (p‖, p⊥, ψ, t)

∂ f
∂t
= E( f ) +C( f ) + Q( f ) + L( f )

◦ E( f ): Acceleration term due to DC electric field
◦ C( f ): Coulomb collision term
◦ Q( f ): Quasi-linear term due to wave-particle resonance
◦ L( f ): Spatial diffusion term

• Bounce-averaged: Trapped particle effect, zero banana width

• Relativistic: momentum p, weakly relativistic collision term

• Nonlinear collision: momentum or energy conservation

• Three-dimensional: spatial diffusion (neoclassical, turbulent)



Self-Consistent Wave Analysis with Modified f (u)

• Modification of velocity distribution from Maxwellian

◦ Absorption of ICRF waves in the presence of energetic ions
◦ Current drive efficiency of LHCD
◦ NTM controllability of ECCD (absorption width)

• Self-consistent wave analysis including modification of f (u)



Development of Self-Consistent Wave Analysis

• Code Development in TASK
◦ Ray tracing analysis with arbitrary f (v): Already done
◦ Full wave analysis with arbitrary f (v): Completed
◦ Fokker-Plank analysis of ray tracing results: Already done
◦ Fokker-Plank analysis of full wave results: Almost competed
◦ Self-consistent iterative analysis: Preliminary

• Tail formation by ICRF minority heating
Momentum Distribution Tail Formation Power deposition
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FLR Effects in Full Waves Analyses

• Several approaches to describe the FLR effects.

• Differential operators: k⊥ρ→ iρ∂/∂r⊥
◦ This approach cannot be applied to the case k⊥ρ � 1.
◦ Extension to the third and higher harmonics is difficult.

• Spectral method: Fourier transform in inhomogeneous direction

◦ This approach can be applied to the case k⊥ρ > 1.
◦ All the wave field spectra are coupled with each other.
◦ Solving a dense matrix equation requires large computer resources.

• Integral operators:
∫
ε(x − x′) · E(x′)dx′

◦ This approach can be applied to the case k⊥ρ > 1
◦ Correlations are localized within several Larmor radii
◦ Necessary to solve a large band matrix



Full Wave Analysis
Using an Integral Form of Dielectric Tensor

• Maxwell’s equation:

∇ × ∇ × E(r) +
ω2

c2

∫
↔ε (r, r′) · E(r′)dr = μ0Jext(r)

• Integral form of dielectric tensor: ↔ε (r, r′)
◦ Integration along the unperturbed cyclotron orbit

• 1D analysis in tokamaks (in the direction of major radius)

◦ To confirm the applicability of an integral form of dielectric tensor
◦ Another formulation in the lowest order of ρ/L
— Sauter O, Vaclavik J, Nucl. Fusion 32 (1992) 1455.

• 2D analysis in tokamaks
◦ In more realistic configurations



One-Dimensional Analysis (1)

ICRF minoring heating without energetic particles (nH/nD = 0.1)

Differential form Integral form
[V/m]

Ex

Ey

[W/m2]

PH

PDPe

[V/m]

Ex

Ey

PH

Pe PD

[W/m 2]

R0 = 1.31m

a = 0.35m

B0 = 1.4T

Te0 = 1.5keV

TD0 = 1.5keV

TH0 = 1.5keV

ns0 = 1020m−3

ω/2π = 20MHz

Differential approach is applicable



One-Dimensional Analysis (2)

ICRF minoring heating with energetic particles (nH/nD = 0.1)

Differential form Integral form
[V/m]

Ex

Ey

[W/m 2]

Pe

PH

PD

[V/m]

Ex

Ey

[W/m 2]

PH

Pe

PD

R0 = 1.31m

a = 0.35m

B0 = 1.4T

Te0 = 1keV

TD0 = 1keV

TH0 = 100keV

ns0 = 1020m−3

ω/2π = 20MHz

Differential approach cannot be applied since k⊥ρi > 1.



One-Dimensional Analysis (3)

ICRF minoring heating with α-particles (nD : nHe = 0.96 : 0.02)

Differential form Integral form
[V/m]

Ex

Ey

[W/m 2]

Pe
PD

PHe

[V/m]

Ex

Ey

[W/m 2]

PD

PHe

Pe

R0 = 3.0m

a = 1.2m

B0 = 3T

Te0 = 10keV

TD0 = 10keV

Tα0 = 3.5MeV

ns0 = 1020m−3

ω/2π = 45MHz

Absorption by α may be overestimated by differential approach.



2-D Formulation

• Coordinates
◦Magnetic coordinate system: (ψ, χ, ζ)
◦ Local Cartesian coordinate system: (s, p, h)
◦ Fourier expansion: poloidal and toroidal mode numbers, m, n

• Perturbed current
J(r, t) = − q

m

∫
du qu

∫ ∞
−∞

dt′
[
E(r′, t′) + u′ × B(r′, t′)

] · ∂ f0(u′)
∂u′

• The time evolution of χ and ζ due to gyro-motion⎧⎪⎪⎪⎨
⎪⎪⎪⎩
χ(t − τ) = χ(t) +

∂χ

∂s
v⊥
ωc
{cos(ωcτ + θ0) − cos θ0} + ∂χ

∂p
v⊥
ωc
{sin(ωcτ + θ0) − sin θ0} − ∂χ

∂h
v‖τ

ζ(t − τ) = ζ(t) +
∂ζ

∂s
v⊥
ωc
{cos(ωcτ + θ0) − cos θ0} + ∂ζ

∂p
v⊥
ωc
{sin(ωcτ + θ0) − sin θ0} − ∂ζ

∂h
v‖τ



Variable Transformations

• Transformation of Integral Variables
◦ Transformation from the velocity space variables (v⊥, θ0) to the

particle position s′ and the guiding center position s0.

◦ Jacobian: J =
∂(v⊥, θ0)
∂(s′, s0)

= − ω2
c

v⊥ sinωcτ
.

◦ Express v⊥ and θ0 by s′ and s0 using τ = t − t′

v2
⊥ =
(
s + s′

2
− s0

)2
ω2

c

cos2 1
2ωcτ

+

(
s − s′

2

)2
ω2

c

sin2 1
2ωcτ

≡ V2
0

v⊥ sin θ0 =
ωc

v⊥
s − s′

2
1

tan 1
2ωcτ

− ωc

v⊥

(
s + s′

2
− s0

)
tan

1
2
ωcτ ≡ V1

v⊥ sin(ωcτ + θ0) =
ωc

v⊥
s − s′

2
1

tan 1
2ωcτ

+
ωc

v⊥

(
s + s′

2
− s0

)
tan

1
2
ωcτ ≡ V2



Integration over τ and u‖

• Maxwell distribution
◦ Anisotropic Maxwell distribution with T⊥ and T‖ :

f0(s0, u) = n0

(
m

2πT⊥

)3/2(T⊥
T‖

)1/2

exp

[
− v2⊥

2v2
T⊥
− v2

‖
2v2

T‖

]

• Integration over τ
◦ Integral in time calculated by the Fourier series expansion with

cyclotron period, 2π/ωc

• Integration over v‖
◦ Interaction between wave and particles along the magnetic field

lines described by the plasma dispersion function.



Final Form of Induced Current

• Induced current:
↔μ −1 ·

⎛
⎝Jmn1 (ψ)
Jmn2 (ψ)
Jmn3 (ψ)

⎞
⎠ = ∫ du′

∫
du0
↔σ (u, u′, u0) ·

⎛
⎝Em

′n
1 (ψ)

Em
′n

2 (ψ)
Em

′n
3 (ψ)

⎞
⎠

• Electrical conductivity:

↔σ (u, u′, u0) = −i
(

1
2π

)7
2

n0
q2

m

∑
m′n′

∑
l

∫ 2π

0
dχ
∫ 2π

0
dζ exp i

{
(m′ − m)χ + (n′ − n)ζ

}↔
H (u, u′, χ)

• Matrix coefficients:

H1i =
(
Q3μ

−1
1i − u′Q1μ

−1
2i

) √π
k‖vT‖

Z(ηl) +

[
−Q1vT⊥

v2
T‖

μ−1
3i +

(
1 − v

2
T⊥
v2
T‖

){
Q3κ2i + Q1u

′κ1i
}] √π

2
1
k‖
Z′(ηl)

H2i =
(−Q2uμ

−1
1i + Q0uu

′μ−1
2i

) √π
k‖vT‖

Z(ηl) +

[
Q0uvT⊥
v2
T‖

μ−1
3i −

(
1 − v

2
T⊥
v2
T‖

)
u
{
Q2κ2i + Q0u

′κ1i
}] √π

2
1
k‖
Z′(ηl)

H3i =

(
−Q2

vT⊥
μ−1

1i +
Q0u′

vT⊥
μ−1

2i

) √
π

2
1
k‖
Z′(ηl) +

[
−Q0

vT‖
μ−1

3i +
vT‖
vT⊥

(
1 − v

2
T⊥
v2
T‖

){
Q2κ2i + Q0u

′κ1i

}] √π
k‖
ηlZ
′(ηl)



Kernel Functions

• Kernel functions

Q⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0
1
2
3

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(u, u′, χ0, l) =
∫ 2π

0
dλ

1
| sin λ|

⎧⎪⎪⎨
⎪⎪⎩

1
V1

V2

V1V2

⎫⎪⎪⎬
⎪⎪⎭

× exp i

[
k⊥vT⊥
ωc

{
(V2 − V1) cosα − (u − u′) sinα

}
+ lλ − V

2
0

2

]

V2
0 =

(
u + u′

2

)2 1

cos2 1
2λ
+

(
u − u′

2

)2 1

sin2 1
2λ

V1 =
u − u′

2
1

tan 1
2λ
− u + u

′

2
tan

1
2
λ

V2 =
u − u′

2
1

tan 1
2λ
+
u + u′

2
tan

1
2
λ

↔
h =

1
Jω

⎛
⎜⎝ 0 −n m′

n 0 i ∂
∂ψ

−m′ −i ∂
∂ψ

0

⎞
⎟⎠

u ≡ s − s0

vT⊥
ωc

u′ ≡ s′ − s0

vT⊥
ωc

where↔κ =↔μ −1 ·↔g ·↔h ,↔μ is the transformation matrix for (s, p, h)→
(ψ, χ, ζ), and↔g is the metric tensor.



Consistent Formulation of Integral Full Wave Analysis

• Analysis of wave propagation
◦ Dielectric tensor:
∇ × ∇ × E(r) − ω

2

c2

∫
dr0

∫
dr′

p′

mγ
∂ f0(p′, r0)

∂p′
· K1(r, r′, r0) · E(r′) = iωμ0 jext

where r0 is the gyrocenter position.

• Analysis of modification of momentum distribution function
◦ Quasi-linear operator
∂ f0
∂t
+

(
∂ f0
∂p

)
E
+
∂

∂p

∫
dr
∫

dr′E(r) E(r′) ·K2(r, r′, r0) · ∂ f0(p′, r0, t)
∂p′

=

(
∂ f0
∂p

)
col

• The kernels K1 and K2 are closely related and localized in the re-
gion |r − r0| � ρ and |r′ − r0| � ρ.



Summary

• Toward an integrated full wave analysis in various range of fre-
quencies, the integrated code, TASK, has been extended.

• Self-consistent analysis including modification of f (p)
◦ Full wave analysis with arbitrary velocity distribution was com-

pleted. Fokker-Planck analysis uses wave fields calculated by
the full wave module. Preliminary result of self-consistent analy-
sis was shown.

• Full wave analysis of EC wave propagation in a small-size ST
◦ Tunneling through the cutoff layer and absorption on the upper

hybrid layer were described.

• 2D full wave analysis including the FLR effects:

◦ 1D analysis elucidated the importance of the FLR effects. For-
mulation was extended to a 2D configuration. Implementation is
under way.



Request for presentation

• Please sign up you name and affiliation:

(mail address from the List of Participants)



Future Plan of TASK Code

Fixed/Free Boundary Equilibrium EvolutionEqulibrium

Core Transport 1D Diffusive TR

1D Dynamic TR

Kinetic TR 2D Fluid TR

SOL Transport 2D Fluid TR

Neutral Tranport 1D Diffusive TR Orbit Following

Energetic Ions Kinetic Evolution Orbit Following

Ray/Beam Tracing Beam PropagationWave Beam

Full Wave Kinetic ε Gyro Integral ε Orbit Integral ε 

Stabilities Tearing ModeSawtooth Osc.

Resistive Wall Mode

Turbulent Transport

ELM Model

CDBM Model Linear GK + ZF

Diagnostic Module

Control Module

Plasma-Wall Interaction

Present Status In 2 years In 5 years

Systematic Stability Analysis

Start Up Analysis

Nonlinear ZK + ZF



Future Plan of Integrated Full Wave Analysis

• DP: dielectric tensor

◦ 2D integral operator for Maxwellian: under way
◦ 2D integral operator for arbitrary f (v): planned
◦ Gyrokinetic arbitrary f (v): planned

•WM: full wave analysis

◦ Update to FEM version: under way
◦Waveguide excitation: under way

• FP: Fokker-Planck analysis

◦ Integral quasi-linear operator: formulation
◦ Radial diffusion: Re-installation


