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Outline

® Present Status of TASK Code

¢ Full wave analysis of ECH in small ST

¢ Self-consistent analysis of wave heating and current drive
¢ [ntegral formulation of full wave analysis

® Summary



Motivation

¢ Full wave analysis is required in various situations in toka-
maks and helical systems

°© lon cyclotron wave : wavelength ~ inhomogeneous scale length
© Lower hybrid wave : effect of multiple reflections

© Electron cyclotron wave : tunneling through a cutoff layer

* Further extension is required for integrated analysis
© Consistent analysis including the modification of f;(v)

o Application to high-frequency waves

© Precise analysis including the FLR effects

¢ Integrated analysis using the TASK code



TASK Code

® Transport Analysing System for TokamaK

® Features

o A Core of Integrated Modeling Code in BPSI
— Modular structure, Unified Standard data interface
o Various Heating and Current Drive Scheme
— EC, LH, IC, AW, (NB)
© High Portability
— Most of Library Routines Included
o Development using CVS (Concurrent Version System)
— Open Source (V0.93 http://bpsi.nucleng.kyoto-u.ac.jp/task/)
© Parallel Processing using MPI Library
o Extension to Toroidal Helical Plasmas



Modules of TASK

EQ
TR
WR
WM
FP
DP
PL
LIB

2D Equilibrium Fixed/Free boundary, Toroidal rotation
1D Transport Diffusive transport, Transport models
3D Geometr. Optics EC, LH: Ray tracing, Beam tracing

3D Full Wave IC, AW: Antenna excitation, Eigen mode
3D Fokker-Planck Relativistic, Bounce-averaged

Wave Dispersion Local dielectric tensor, Arbitrary f(v)
Data Interface Data conversion, Profile database
Libraries

under development

TX | Transport analysis including plasma rotation and E;
WA | Global linear stability analysis

in collaboration
TOPICS-EQU Free-boundary equilibrium: Azumi (JAEA)




Modular Structure of TASK
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Wave Dispersion Analysis : TASK/DP

e Various Models of Dielectric Tensor € (w, k; r):

© Resistive MHD model

o Collisional cold plasma model

o Collisional warm plasma model

o Kinetic plasma model (Maxwellian, non-relativistic)
o Kinetic plasma model (Arbitrary f(v), relativistic)

o Gyro-kinetic plasma model (Maxwellian)

* Numerical Integration in momentum space: Arbitrary f(v)

o Relativistic Maxwellian
o Qutput of TASK/FP: Fokker-Planck code



Full wave analysis: TASK/WM

®* maghnetic surface coordinate: (, 6, )

e Boundary-value problem of Maxwell’s equation
2
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e Kinetic dielectric tensor: €

o Wave-particle resonance: Z[(w — nwc)/kjug]

o Fast ion: Drift-kinetic

0
5_ + U”V” + (vd +vg)-V+ e—a(U”E” +vq-E)
[ My

¢ Poloidal and toroidal mode expansion
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o Accurate estimation of k”

® Eigenmode analysis: Complex eigen frequency which maximize
wave amplitude for fixed excitation proportional to electron density



Full Wave Analysis of ECH in a Small-Size ST

e Small-size spherical tokamak: LATE (Kyoto University)

O T. Maekawa et al., IAEA-CN-116/EX/P4-27 (Vilamoura, Portugal, 2004)
©R=022m,a=0.16m, By =0.0552T, [, = 6.25kA, k= 1.5
© f = 2.8 GHz, Toroidal mode number n = 12, Extraordinary mode

Penetration . Propagation . Collisional damping
through cutoff layer along the UHR layer near the UHR layer
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Density Dependence of ECW Propagation
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Fokker-Planck Analysis : TASK/FP

¢ Fokker-Planck equation
for velocity distribution function f(p,, p1,¥,?)

0
L= ke o+ L

o E(f): Acceleration term due to DC electric field

o C(f): Coulomb collision term

© O(f): Quasi-linear term due to wave-particle resonance

o L(f): Spatial diffusion term
¢ Bounce-averaged: Trapped particle effect, zero banana width
¢ Relativistic: momentum p, weakly relativistic collision term
¢ Nonlinear collision: momentum or energy conservation

®* Three-dimensional: spatial diffusion (neoclassical, turbulent)



Self-Consistent Wave Analysis with Modified f(v)

¢ Modification of velocity distribution from Maxwellian

o Absorption of ICRF waves in the presence of energetic ions

o Current drive efficiency of LHCD

© NTM controllability of ECCD (absorption width)

e Self-consistent wave analysis including modification of f(v)
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Development of Self-Consistent Wave Analysis

® Code Development in TASK

© Ray tracing analysis with arbitrary f(v): Already done
o Full wave analysis with arbitrary f(v): Completed
© Fokker-Plank analysis of ray tracing results: Already done

© Fokker-Plank analysis of full wave results: Almost competed
o Self-consistent iterative analysis: Preliminary

¢ Tail formation by ICRF minority heating

Momentum Distribution Tail Formation Power deposition
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FLR Effects in Full Waves Analyses

® Several approaches to describe the FLR effects.

e Differential operators: k, p — ipd/0r |

© This approach cannot be applied to the case k,p > 1.
© Extension to the third and higher harmonics is difficult.

¢ Spectral method: Fourier transform in inhomogeneous direction

© This approach can be applied to the case k£, p > 1.
o All the wave field spectra are coupled with each other.
o Solving a dense matrix equation requires large computer resources.

* Integral operators: [ e(x — x’) - E(x")dx’
© This approach can be applied to the case k, p > 1

o Correlations are localized within several Larmor radii
© Necessary to solve a large band matrix



Full Wave Analysis
Using an Integral Form of Dielectric Tensor

e Maxwell’s equation:
2

VXV XE(r)+ a)_z / ?(r, ¥) - E(r)dr = pgJ exi(r)
C
e Integral form of dielectric tensor: € (r, r)

°© Integration along the unperturbed cyclotron orbit

¢ 1D analysis in tokamaks (in the direction of major radius)

© To confirm the applicability of an integral form of dielectric tensor
© Another formulation in the lowest order of p/L
— Sauter O, Vaclavik J, Nucl. Fusion 32 (1992) 1455.

¢ 2D analysis Iin tokamaks

© [n more realistic configurations



One-Dimensional Analysis (1)

ICRF minoring heating without energetic particles (ny/np = 0.1)

Differential form Integral form
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Differential approach is applicable



One-Dimensional Analysis (2)

ICRF minoring heating with energetic particles (ny/np =0.1)

Differential form Integral form
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Differential approach cannot be applied since k, p; > 1.



One-Dimensional Analysis (3)

ICRF minoring heating with a-particles (np : ng. = 0.96 : 0.02)

Differential form Integral form
XIXIXNXX XXX

R() = 3.0m

a=1.2m

By = 3T

T.o = 10keV

TD() = 10keV

Ta() = 3.5MeV

ngo = 10°m™>
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Absorption by a may be overestimated by differential approach.



2-D Formulation

e Coordinates

© Magnetic coordinate system: (¥, v, )
o Local Cartesian coordinate system: (s, p, h)
© Fourier expansion: poloidal and toroidal mode numbers, m, n

® Perturbed current

J(r,1) = _% /dv qu /OO di’ |[E(r', ')+ x B(r',1")] - 0fo@)

ov’

®* The time evolution of y and / due to gyro-motion

2

9 9
(= 1) = (D) + X% (cos(wer + o) — cos By} + XL (sin(wer + o) — sin o} — Koy
05 W, 0p we oh

9
£t =) = £) + 25U cos(wer + ) — cos b} + 222 (sin(wer + f) — sin b} — ooyt
X 05 W, 0p we oh




Variable Transformations

¢ Transformation of Integral Variables

© Transformation from the velocity space variables (v, 6p) to the
particle position s’ and the guiding center position sp.
(v, 6p) wg

o Jacobian: J = = — . :
o(s’, sp) U SIN WeT

o Express v, and 6y by s’ and so using T=t—-1
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Integration over T and vy,

¢ Maxwell distribution
° Anisotropic Maxwell distribution with 7, and T, :

3/2 1/2 > 2
_ m T, vl Y
Jolso-2) =1 <27TTL> (Tn) o [ 207, ZU%]

¢ Integration over

°© Integral in time calculated by the Fourier series expansion with
cyclotron period, 27/ wc
* Integration over v

o [nteraction between wave and particles along the magnetic field
lines described by the plasma dispersion function.



Final Form of Induced Current

* Induced current:
T () E7"(p)
@t Jin) | = /du’/duo T (u, i, up) - Ezm:”(gb)
J3" (W) EZ ()

¢ Electrical conductivity:
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e Matrix coefficients:
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Kernel Functions

e Kernel functions
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Consistent Formulation of Integral Full Wave Analysis

¢ Analysis of wave propagation

o Dielectric tensor:

2
V x V x E(r —w—/dro

47 P 0fo(p', ro)
r

K 9 ,9 E , — I .CX
oy ap 1(r, 1, 10) - E(r') = 100 Jex

c2

where rg is the gyrocenter position.

¢ Analysis of modification of momentum distribution function
o Quasi-linear operator

Ofo , (9o dfo(p'sr0, 1) _ (0fo
o (517)1; ap/dr/drE(r)E(r) K>(r,¥,ry)- o = (517)(;01

®* The kernels K| and K, are closely related and localized in the re-
gion [r—rol S pand |r' — rol < p.




Summary

¢ Toward an integrated full wave analysis in various range of fre-
quencies, the integrated code, TASK, has been extended.

e Self-consistent analysis including modification of f(p)

© Full wave analysis with arbitrary velocity distribution was com-
pleted. Fokker-Planck analysis uses wave fields calculated by
the full wave module. Preliminary result of self-consistent analy-
sis was shown.

e Full wave analysis of EC wave propagation in a small-size ST

© Tunneling through the cutoff layer and absorption on the upper
hybrid layer were described.

¢ 2D full wave analysis including the FLR effects:

© 1D analysis elucidated the importance of the FLR effects. For-
mulation was extended to a 2D configuration. Implementation is
under way.
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Future Plan of TASK Code

Present Status

In 2 years In 5 years
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Future Plan of Integrated Full Wave Analysis

® DP: dielectric tensor

© 2D integral operator for Maxwellian: under way
© 2D integral operator for arbitrary f(v): planned
o Gyrokinetic arbitrary f(v): planned

¢ WM: full wave analysis

© Update to FEM version: under way
© Waveguide excitation: under way

® FP: Fokker-Planck analysis

° Integral quasi-linear operator: formulation
© Radial diffusion: Re-installation



