Workshop on Transport and Confinement NIFS University, 2006/11/09

Integrated Transport Simulation Aiming at Burning Plasmas

A. Fukuyama and M. Honda

Department of Nuclear Engineering, Kyoto University

Contents

- Status of BPSI ans TASK
- Status of Burning Plasma Simulation (Kessel, IAEA)
- Advanced transport simulation: TASK/TX (Honda)
- Summary

Burning Plasma Simulation

- Simulation describing a burning plasma:
 - Whole plasma (core & edge & diverter & wall-plasma)
 - Whole discharge
 - (startup & sustainment & transients events & termination)
 - **Reasonable accuracy** (validation with experimental data)
 - Reasonable computer resources

(still limited)

Target of BPSI

- Framework for collaboration of various plasma simulation codes
- Physics integration with different time and space scales
- Advanced technique of computer science

Integrated Code Development Based on BPSI Framework

Integrated code: TASK and TOPICS

TASK Code

• Features

• Core of Integrated Modeling Code in BPSI

- Modular structure
- Reference data interface and standard data set
- Various Heating and Current Drive Scheme
 - EC, LH, IC, AW, NB
- High Portability
- Development using CVS (Concurrent Version System)
- ° **Open Source** (V1.0: Fortran95, http://bpsi.nucleng.kyoto-u.ac.jp/task/)
- Parallel Processing using MPI Library
- **Extension to Toroidal Helical Plasmas**

Modules of TASK

EQ	2D Equilibrium	Fixed/Free boundary, Toroidal rotation
TR	1D Transport	Diffusive transport, Transport models
WR	3D Geometr. Optics	EC, LH: Ray tracing, Beam tracing
WM	3D Full Wave	IC, AW: Antenna excitation, Eigen mode
FP	3D Fokker-Planck	Relativistic, Bounce-averaged
DP	Wave Dispersion	Local dielectric tensor, Arbitrary $f(v)$
PL	Data Interface	Data conversion, Profile database
LIB	Libraries	LIB, MTX, MPI

Under Development

TX Transport analysis including plasma rotation and E_r

Collaboration with TOPICS

EQUFree boundary equilibriumNBINBI heating

Modular Structure of TASK

Recent progress in TASK code

- **WM/FP/DP** Development of Self-Consistent Wave Analysis
- **EQ/TR** Transport Simulation for ITER

Benchmark test for ITER Hybrid/SS scenario (Kessel)

- **TX** Dynamical Transport Simulation including Rotation
- **EQU/NBI** Common Module Interface
- **3D** Collaboration with NIFS

Self-Consistent Wave Analysis with Modified f(v)

Modification of velocity distribution from Maxwellian

- Absorption of ICRF waves in the presence of energetic ions
- Current drive efficiency of LHCD
- NTM controllability of ECCD (absorption width)
- Self-consistent wave analysis including modification of f(v)

Code Development in TASK

- \circ Ray tracing analysis with arbitrary f(v): Already done
- \circ Full wave analysis with arbitrary f(v): **Completed**
- Fokker-Plank analysis of ray tracing results: Already done
- Fokker-Plank analysis of full wave results: Almost competed
- Self-consistent iterative analysis: Preliminary

• Tail formation by ICRF minority heating

ITER H-mode Scenario

- Large plasma current: $I_p = 15 \text{ MA}$, On-axis heating: $P_{\text{NB}} = 40 \text{ MW}$
- Positive shear profile, Relatively large f_{OH}

• Hybrid scenario

•
$$I_{\rm p} = 12 \,{\rm MA}, \, P_{\rm NB} = 33 \,{\rm MW}$$

Steady state

•
$$I_{\rm p} = 6 \rightarrow 9 \,{\rm MA}$$

Benchmark Test for ITER Hybrid Scenario

- C.E. Kessel et al.: IAEA2006 IT/P1-7 (ITPA/SSO)
- Codes: CRONOS, ONETWO, TSC/TRANSP, TOPICS, ASTRA

Figure 1. Electron temperature profiles and density profile (a), ion temperature profiles (b), safety factor profiles (c), for the NB+IC ITER Hybrid simulations.

Figure 2. External power deposition profiles to electrons (a) and ions (b) and the toroidal current density (c) for the NB+IC ITER Hybrid simulations.

Benchmark Test for ITER Steady-State Scenario

• Codes: TOPICS, CRONOS, TSC/TRANSP

Figure 5. Electron and ion temperature, density, and external power deposition profiles for Steady State ITER simulations, (a) TOPICS (NB+EC), (b) CRONOS (NB+IC+LH), and (c) TSC/TRANSP (NB+IC+LH).

Figure 6. Safety factor and toroidal current density profiles and its contributions for Steady State ITER simulations, (a) TOPICS (NB+EC), (b) CRONOS (NB+IC+LH), and (c) TSC/TRANSP (NB+IC+LH).

• Transport Simulation including Core and SOL Plasmas

• Role of Separatrix

- Closed magnetic surface \iff Open magnetic field line
- Difference of dominant transport process
- Transient Behavior of Plasma Rotation
 - Radial Electric Field: Radial force balance, (Poisson equation)
 - Poloidal rotation: Equation of motion
 - Toroidal rotation: Equation of motion
 - Equation of motion rather than transport matrix
- Analysis including Atomic Processes

1D Transport code: TASK/TX

- **Dynamic Transport Equation**: *Fukuyama et al. PPCF (1994)*
 - A set of flux-surface averaged equations
 - \circ Two fluid equation for electrons and ions
 - Continuity equation
 - Equation of motion (radial, poloidal, toroidal)
 - Energy transport equation
 - Neoclassical transport
 - Poloidal viscosity
 - Turbulent transport
 - Ambipolar diffusion through poloidal momentum transfer
 - Thermal diffusivity, Perpendicular viscosity
 - Maxwell's equation, Poisson's equation
 - Slowdown equation for beam component
 - Diffusion equation for neutral particles

Transport Model

Neoclassical transport

 \circ Poloidal viscosity \longrightarrow radial transport, resistivity, bootstrap current, Ware pinch

- Hirshman and Sigmar
- NCLASS

Turbulent Diffusion

Perpendicular momentum exchange between electron and ion
Non-bipolar flux (electron flux = ion flux)

$$\begin{split} F_{e\theta}^{W} &= -F_{i\theta}^{W} = -\frac{e^{2}B_{\phi}^{2}D_{e}}{T_{e}}n_{e}\left(u_{e\theta} - \frac{B_{\theta}}{B_{\phi}}u_{e\phi}\right), \\ F_{e\phi}^{W} &= -F_{i\phi}^{W} = \frac{e^{2}B_{\phi}^{2}D_{e}}{T_{e}}\frac{B_{\theta}}{B_{\phi}}n_{e}\left(u_{e\theta} - \frac{B_{\theta}}{B_{\phi}}u_{e\phi}\right), \end{split}$$

Perpendicular viscosity, Thermal diffusivity

• Particle, momentum and ion heat losses along the field line

Decay time in a sound velocity time scale

$$\nu_{\rm L} = \frac{C_{\rm S}}{2\pi qR}$$

• Electron heat loss

• Decay time in a thermal diffusion time scale

$$v_{\rm L} = \frac{\chi_{\parallel}}{(2\pi qR)^2}$$

Recycling from diverter

 \circ Recycling rate: $\gamma_0 = 0.8$

fixed density and temperature at diverter

• Gas puff from wall, NBI, Charge exchange

• Electron flux

 \circ Inertia term in the equation of motion = 0

Radial flux

$$\begin{split} u_{er} &= -\frac{1}{1+\alpha} \frac{\bar{v}_{e} + v_{ei}}{n_{e}m_{e}\Omega_{e\phi}^{2}} \left[\frac{\mathrm{d}P_{e}}{\mathrm{d}r} + \frac{\mathrm{d}P_{i}}{\mathrm{d}r} \right] - \frac{\alpha}{1+\alpha} \frac{E_{\phi}}{B_{\theta}} + \frac{1}{1+\alpha} \frac{F_{\theta}^{W}}{n_{e}m_{e}\Omega_{e\phi}} \\ &+ \frac{1}{1+\alpha} \frac{\bar{v}_{e}}{\Omega_{e\phi}} u_{i\theta} + \frac{\alpha}{1+\alpha} \frac{B_{\phi}}{B_{\theta}} \frac{v_{eb}}{\Omega_{e\phi}} (u_{b\phi} - u_{i\phi}) \\ &\text{where} \quad \alpha \equiv \frac{\bar{v}_{e} + v_{ei}}{v_{ei} + v_{eb}} \frac{B_{\theta}^{2}}{B_{\phi}^{2}}, \quad v_{eb} = \frac{n_{b}m_{b}}{n_{e}m_{e}} v_{be} \end{split}$$

 \circ Poloidal neoclassical viscosity $\bar{\nu}_e$

- \circ Factor α represents parallel neoclassical viscosity
- First three terms in RHS are neoclassical diffusion, Ware pinch and turbulent diffusion.

Toroidal current

$$u_{e\phi} = \frac{-1}{v_{ei} + v_{eb}} \left\{ \frac{1}{1 + \alpha} \frac{e}{m_e} E_{\phi} + \frac{1}{1 + \alpha} \frac{B_{\theta}}{B_{\phi}} \frac{\bar{v}_e + v_{ei}}{n_e m_e} \left[\frac{dP_e}{dr} + \frac{dP_i}{dr} \right] \right. \\ \left. + \frac{1}{1 + \alpha} \frac{B_{\theta}}{B_{\phi}} \frac{F_{\theta}^{W}}{n_e m_e} + \frac{\bar{v}_e}{1 + \alpha} \frac{B_{\theta}}{B_{\phi}} u_{i\theta} \right. \\ \left. - \left(v_{eb} - \frac{\alpha}{1 + \alpha} v_{ei} \right) u_{b\phi} - \left(v_{ei} + \frac{\alpha}{1 + \alpha} v_{eb} \right) u_{i\phi} \right\}$$

- The first two terms in RHS are neoclassical resistivity and bootstrap current
- Similar expression for poloidal rotation

Model equations include dominant neoclassical transport.

Recent Update of TASK/TX

Numerical scheme

- Finite element method (Linear interpolation, radial variable)
- Streamline Upwind Petrov-Galerkin (SUPG) method
- Choice of variables and boundary conditions
- Improvement of numerical stability
- Increase of spatial resolution
- Neoclassical poloidal viscosity
 - \circ Hirshman, Sigmar \longrightarrow NCLASS
- SOL plasma model
 - Electron heat loss: Thermal diffusion

Neoclassical Effects

- Comparison of resistivity and bootstrap current
 - Value Estimated from the steady state flux
 - Value calculated by NCLASS

Neoclassical Transport (without turbulent transport)

Density

Radial electric field

Typical Profiles (D_e : fixed parabolic profile)

Density Peaking Due to Momentum Input

• Density peaking was observed in NBI counter injection on JT60-U. *Ref. Takenaga et al. (ITPA, 2005)*

Density Peaking Simulation (TASK/TR: old version)

- Transport model: CDBM (particle diffusivity, thermal diffusivity)
- NBI 6.5 MW was injected 50 ms after the simulation started.
- Simulation results
 - n(0) for co injection is 12% higher than that for counter inj.

○ Temperature is higher for counter injection ↔ experiments

• 3D Equilibrium:

- Interface to equilibrium data from VMEC or HINT
- Interface to neoclassical transport coefficient codes
- Modules 3D-ready:
 - WR: Ray and beam tracing
 - WM: Full wave analysis
- Modules to be updated:
 - \circ **TR**: Diffusive transport (with an appropriate model of E_r)
 - **TX**: Dynamical transport (with neoclassical toroidal viscosity)
 - **FP**: Fokker-Planck analysis (with helical ripple trapping)
- Modules to be added: (by Y. Nakamura)
 - EI: Time evolution of current profile in helical geometry

Future Plan of TASK code

Summary

- We are developing **TASK** code as a reference core code for burning plasma simulation based on transport analysis.
- Preliminary results of **self-consistent analysis of wave heating and current drive** describing the time evolution of the momentum distribution function and its influence on the wave propagation and absorption have been obtained.
- Simulations of ITER advanced scenarios requires further benchmark tests
- Dynamical transport module **TASK/TX** was significantly improved on the numerical scheme and the transport model. Barrier formation and density modification will be studied.
- Extension to 3D configuration is on-going in collaboration with Dr. Y. Nakamura and NIFS.

• Fluid equations (electrons and ions)

$$\frac{\partial n_s}{\partial t} = -\frac{1}{r}\frac{\partial}{\partial r}\left(rn_s u_{sr}\right) + S_s$$

$$\frac{\partial}{\partial t}(m_s n_s u_{sr}) = -\frac{1}{r}\frac{\partial}{\partial r}(rm_s n_s u_{sr}^2) + \frac{1}{r}m_s n_s u_{s\theta}^2 + e_s n_s (E_r + u_{s\theta}B_{\phi} - u_{s\phi}B_{\theta}) - \frac{\partial}{\partial r}n_s T_s$$

$$\frac{\partial}{\partial t}(m_s n_s u_{s\theta}) = -\frac{1}{r^2} \frac{\partial}{\partial r} (r^2 m_s n_s u_{sr} u_{s\theta}) + e_s n_s (E_\theta - u_{sr} B_\phi) + \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^3 n_s m_s \mu_s \frac{\partial}{\partial r} \frac{u_{s\theta}}{r} \right)$$

$$+F_{s\theta}^{\rm NC} + F_{s\theta}^{\rm C} + F_{s\theta}^{\rm W} + F_{s\theta}^{\rm X} + F_{s\theta}^{\rm L}$$

$$\frac{\partial}{\partial t} \left(m_s n_s u_{s\phi} \right) = -\frac{1}{r} \frac{\partial}{\partial r} (r m_s n_s u_{sr} u_{s\phi}) + e_s n_s (E_\phi + u_{sr} B_\theta) + \frac{1}{r} \frac{\partial}{\partial r} \left(r n_s m_s \mu_s \frac{\partial}{\partial r} u_{s\phi} \right)$$

$$+F_{s\phi}^{\rm C} + F_{s\phi}^{\rm W} + F_{s\phi}^{\rm X} + F_{s\phi}^{\rm L}$$

$$\frac{\partial}{\partial t}\frac{3}{2}n_{s}T_{s} = -\frac{1}{r}\frac{\partial}{\partial r}r\left(\frac{5}{2}u_{sr}n_{s}T_{s} - n_{s}\chi_{s}\frac{\partial}{\partial r}T_{e}\right) + e_{s}n_{s}(E_{\theta}u_{s\theta} + E_{\phi}u_{s\phi}) + P_{s}^{C} + P_{s}^{L} + P_{s}^{H}$$

• Diffusion equation for (fast and slow) neutral particles

$$\frac{\partial n_0}{\partial t} = -\frac{1}{r}\frac{\partial}{\partial r}\left(-rD_0\frac{\partial n_0}{\partial r}\right) + S_0$$

Maxwell's equation

$$\frac{1}{r}\frac{\partial}{\partial r}(rE_r) = \frac{1}{\epsilon_0}\sum_{s}e_s n_s$$
$$\frac{\partial B_{\theta}}{\partial t} = \frac{\partial E_{\phi}}{\partial r}, \qquad \frac{\partial B_{\phi}}{\partial t} = -\frac{1}{r}\frac{\partial}{\partial r}(rE_{\phi})$$
$$\frac{1}{c^2}\frac{\partial E_{\theta}}{\partial t} = -\frac{\partial}{\partial r}B_{\phi} - \mu_0\sum_{s}e_s n_s u_{s\theta}, \qquad \frac{1}{c^2}\frac{\partial E_{\phi}}{\partial t} = \frac{1}{r}\frac{\partial}{\partial r}(rB_{\theta}) - \mu_0\sum_{s}e_s n_s u_{s\phi}$$