第23回プラズマ・核融合学会年会 筑波大学大学会館 2006/11/28 28pC03

モジュール間連携機構を用いた トカマク統合シミュレーション

Integrated Tokamak Simulation Using Inter-Module Collaboration

- 福山 淳,本多 充,一桐正志,安積正史^A,矢木雅敏^B 京大工,^A原子力機構,^B九大応力研
- A. Fukuyama, M. Honda, M. Ichikiri, M. Azumi^A, M. Yagi^B Dept. Nucl. Eng., Kyoto U, ^AJAEA, ^BRIAM, Kyushu U
 - トカマク統合シミュレーション
 - TASK コード, モジュール間連携機構
 - 解析例:EQ+TR, DP+WM+FP
 - ・まとめ

• Purpose

- To predict the behavior of burning plasmas
- To develop reliable and efficient schemes to control them
- To contribute to reactor design

• Simulation describing various phenomena in a tokamak plasma:

- Whole plasma (core & edge & divertor & wall-plasma)
- Whole discharge (startup & sustainment & termination)
- **Reasonable accuracy** (validation with experimental data)

(still limited)

- Reasonable computer resources
- Strategy of integrated modeling
 - Development and assembly of necessary modeling codes
 - Organized development of simulation system

BPSI: Burning Plasma Simulation Initiative

- Research Collaboration among Universities, NIFS and JAEA
- Targets of BPSI
 - Framework for collaboration of various plasma simulation codes
 - Physics integration with different time and space scales
 - Advanced technique of computer science

Integrated code: TASK and TOPICS

TASK Code

• Transport Analysing System for TokamaK

Features

- A core of integrated modeling code in BPSI
 - Modular structure
 - Reference code for data interface and standard data set

• Various heating and current drive scheme

- EC, LH, IC, AW, NB

Advanced transport modeling

- Diffusive, Dynamic, Kinetic
- High portability
- ° **Open source** (V1.0: Fortran95, http://bpsi.nucleng.kyoto-u.ac.jp/task/)
- Parallel processing using MPI library
- Extension to toroidal helical plasmas

Modules of TASK

EQ	2D Equilibrium	Fixed/Free boundary, Toroidal rotation
TR	1D Transport	Diffusive transport, Transport models
WR	3D Geometr. Optics	EC, LH: Ray tracing, Beam tracing
WM (3D Full Wave	IC, AW: Antenna excitation, Eigenmode
FP (3D Fokker-Planck	Relativistic, Bounce-averaged
DP	Wave Dispersion	Local dielectric tensor, Arbitrary $f(v)$
PL	Data Interface	Data conversion, Profile database
LIB	Libraries	LIB, MTX, MPI

Under Development

TX Transport analysis including plasma rotation and E_r

Collaboration with TOPICS

EQU Free boundary equilibrium

NBI NBI heating

Modular Structure of TASK

Inter-Module Collaboration Interface: TASK/PL

- Purpose of the interface
 - Data exchange:
 - Standard dataset
 - Data exchange interface
 - Execution control:
 - Sequential control of module execution
 - Uniform user interface
- Role of Data Interface Layer: TASK/PL
 - To keep the present status of plasma
 - To store the history of plasma
 - Interface to file system
 - Interface to experimental profile database
 - Interface to simulation profile database

Standard Dataset (interim)

Shot data

Machine ID, Shot ID, Model ID

Device data: (Level 1)

RR	R	m	Geometrical major radius
RA	а	m	Geometrical minor radius
RB	b	m	Wall radius
BB	В	Т	Vacuum toroidal mag. field
RKAP	К		Elongation at boundary
RDLT	δ		Triangularity at boundary
RIP	$I_{\rm p}$	А	Typical plasma current

Equilibrium data: (Level 1)

PSI2D	$\psi_{\rm p}(R,Z)$	Tm^2
PSIT	$\psi_{t}(ho)$	Tm^2
PSIP	$\psi_{\rm p}(ho)$	Tm^2
ITPSI	$I_{\rm t}(\rho)$	Tm
IPPSI	$I_{\rm p}(ho)$	Tm
PPSI	$p(\rho)$	MPa
QINV	$1/q(\rho)$	

2D poloidal magnetic flux Poloidal magnetic flux Poloidal magnetic flux Poloidal current: $B_{\phi}R$ Toroidal current Plasma pressure Inverse of safety factor

Metric data

- **1D**: $V'(\rho), \langle \nabla V \rangle(\rho), \cdots$
- **2D**: g_{ij}, \cdots
- **3D**: g_{ij}, \cdots

Fluid plasma data

NSMAX	S	
PA	A_s	
PZ0	Z_{0s}	
ΡZ	Z_s	
PN	$n_s(\rho)$	m^3
PT	$T_s(\rho)$	eV
PU	$u_{s\phi}(\rho)$	m/s
QINV	$1/q(\rho)$	

Kinetic plasma data

$f(p, \theta_p, p)$	$\rho)$
	$f(p, \theta_p, p)$

Dielectric tensor data

Full wave field data

CE	$E(ho,\chi,\zeta)$ V/m	Complex wave electric field
CB	$\boldsymbol{B}(\rho,\chi,\zeta) \operatorname{Wb}/\mathrm{m}^2$	Complex wave magnetic field

Number of particle species

Atomic mass

Charge number

Number density

Temperature

Charge state number

Toroidal rotation velocity

momentum dist. fn at $\theta = 0$

Inverse of safety factor

Local dielectric tensor

Ray/Beam tracing field data

RRAY	$R(\ell)$	m	R of ray at length ℓ
ZRAY	$Z(\ell)$	m	Z of ray at length ℓ
PRAY	$\phi(\ell)$	rad	ϕ of ray at length ℓ
CERAY	$\pmb{E}(\ell)$	V/m	Wave electric field at length ℓ
PWRAY	$\pmb{P}(\ell)$	W	Wave power at length ℓ
DRAY	$d(\ell)$	m	Beam radius at length ℓ
VRAY	$v(\ell)$	1/m	Beam curvature at length ℓ

Data Exchange Interface

• Data structure: Derived type (Fortran95): structure type

time	plasmaf%time
number of grid	plasmaf%nrmax
square of grid radius	plasmaf%s(nr)
plasma density	plasmaf%data(nr)%pn
plasma temperature	<pre>plasmaf%data(nr)%pt</pre>

• Program interface

Initialize	<pre>bpsd_init_plasmaf(ierr)</pre>
Set data	<pre>bpsd_set_plasmaf('plasmaf',plasmaf,ierr)</pre>
Get data	<pre>bpsd_set_plasmaf('plasmaf',plasmaf,ierr)</pre>

• Other functions:

• Save data into a file, Load data from a file, Plot data

• Example for TASK/TR

TR_INIT	Initialization (Default value)	BPSX_INIT('TR')
TR_PARM(ID,PSTR)	Parameter setup (Namelist input)	<pre>BPSX_PARM('TR',ID,PSTR)</pre>
TR_PROF(T)	Profile setup (Spatial profile, Time)	BPSX_PROF('TR',T)
TR_EXEC(DT)	Exec one step (Time step)	BPSX_EXEC('TR',DT)
TR_GOUT (PSTR)	Plot data (Plot command)	<pre>BPSX_GOUT('TR',PSTR)</pre>
TR_SAVE	Save data in file	BPSX_SAVE('TR')
TR_LOAD	load data from file	BPSX_LOAD('TR')
TR_TERM	Termination	BPSX_TERM('TR')

Module registration

. . .

TR_STRUCT%INIT=TR_INIT TR_STRUCT%PARM=TR_PARM TR_STRUCT%EXEC=TR_EXEC

Example: Coupling of TASK/TR and TOPICS/EQU

- TOPICS/EQU: Free boundary 2D equilibrium
- **TASK/TR** Diffusive 1D transport (CDBM + Neoclassical)
- **QUEST** parameters:

 $\circ R = 0.64 \text{ m}, a = 0.04 \text{ m}, B = 0.64 \text{ T}, I_p = 300 \text{ kA}, \text{OH+LHCD}$

Transport simulation

- OH + off-axis LHCD: 200 kW
- Formation of internal transport barrier (equilibrium not solved)

Self-Consistent Wave Analysis with Modified f(v)

Modification of velocity distribution from Maxwellian

- Absorption of ICRF waves in the presence of energetic ions
- Current drive efficiency of LHCD
- NTM controllability of ECCD (absorption width)
- Self-consistent wave analysis including modification of $f(\mathbf{v})$

Self-Consistent ICRF Minority Heating Analysis

• Analysis in TASK

- \circ Dielectric tensor for arbitrary f(v)
- ° Full wave analysis with the dielectric tensor
- Fokker-Plank analysis of full wave results
- Self-consistent iterative analysis: Preliminary

Energetic ion tail formation

• Broadening of power deposition profile

r/a

Summary

- We are developing module interfaces for integrated modeling of toroidal plasmas using the **TASK** code as a reference.
- The standard dataset, data exchange interface, and execution interface have been developed.
- The equilibrium code was extracted from the **TOPICS** code and coupled with the transport code in TASK using the module interface.
- Preliminary results of **self-consistent analysis of wave heating and current drive** describing the time evolution of the momentum distribution function and its influence on the wave propagation and absorption have been obtained.

Full wave analysis: TASK/WM

- magnetic surface coordinate: (ψ, θ, φ)
- Boundary-value problem of Maxwell's equation

$$\nabla \times \nabla \times E = \frac{\omega^2}{c^2} \overleftrightarrow{\epsilon} \cdot E + \mathrm{i} \,\omega \mu_0 \mathbf{j}_{\text{ext}}$$

- Kinetic **dielectric tensor**: $\overleftarrow{\epsilon}$
 - Wave-particle resonance: $Z[(\omega n\omega_c)/k_{\parallel}v_{th}]$
 - Fast ion: Drift-kinetic

$$\left[\frac{\partial}{\partial t} + v_{\parallel} \nabla_{\parallel} + (\boldsymbol{v}_{\rm d} + \boldsymbol{v}_{\rm E}) \cdot \boldsymbol{\nabla} + \frac{e_{\alpha}}{m_{\alpha}} (v_{\parallel} E_{\parallel} + \boldsymbol{v}_{\rm d} \cdot \boldsymbol{E}) \frac{\partial}{\partial \varepsilon}\right] f_{\alpha} = 0$$

Poloidal and toroidal mode expansion

\circ Accurate estimation of $k_{||}$

• Eigenmode analysis: **Complex eigen frequency** which maximize wave amplitude for fixed excitation proportional to electron density

Fokker-Planck equation

for velocity distribution function $f(p_{\parallel}, p_{\perp}, \psi, t)$

$$\frac{\partial f}{\partial t} = E(f) + C(f) + Q(f) + L(f)$$

 $\circ E(f)$: Acceleration term due to DC electric field

- $\circ C(f)$: Coulomb collision term
- $\circ Q(f)$: Quasi-linear term due to wave-particle resonance
- \circ *L*(*f*): Spatial diffusion term
- Bounce-averaged: Trapped particle effect, zero banana width
- **Relativistic**: momentum *p*, weakly relativistic collision term
- Nonlinear collision: momentum or energy conservation
- Three-dimensional: spatial diffusion (neoclassical, turbulent)

Wave Dispersion Analysis : TASK/DP

• Various Models of Dielectric Tensor $\overleftarrow{\epsilon}(\omega, k; r)$:

- Resistive MHD model
- Collisional cold plasma model
- Collisional warm plasma model
- Kinetic plasma model (Maxwellian, non-relativistic)
- Kinetic plasma model (**Arbitrary** f(v), relativistic)
- Gyro-kinetic plasma model (Maxwellian)
- Gyro-kinetic plasma model (Arbitrary f(v), non-relativistic)
- Arbitrary f(v):
 - Relativistic Maxwellian
 - Output of TASK/FP