第23回プラズマ・核融合学会年会 筑波大学大学会館

2006/11/30 VI-3

ITER 燃焼プラズマに向けたシミュレーション研究の課題と取り組みを考える

A. Fukuyama (Dept. Nucl. Eng., Kyoto U)

- 燃焼プラズマシミュレーション
- 統合化・モデル開発・計算手法
- •現状と課題

燃焼プラズマシミュレーション

自律性の高い燃焼プラズマ

- プラズマ加熱の大部分が,密度と温度に依存する 粒子加熱
- プラズマ電流の多くが,圧力勾配とポロイダル磁界に依存する 自発電流
- プラズマ中心部では,燃料イオン密度と温度に依存する 粒子生成

炉心プラズマの予測と制御手法の開発 ITER プラズマの運転シナリオ策定 より魅力ある炉設計への貢献

炉心プラズマ全体の放電時間全体にわたる 自己完結的な時間発展シミュレーションが必要

将来的には,ブランケット等を含めた 炉システムのシミュレーションを目指す 燃焼プラズマ統合シミュレーション

統合モデリングコード

- 統合モデリングコードに期待されること
 - 必須機能を備えたコアコード
 - ○既存の解析コードの結合
 - ○新しい理論モデルの迅速な導入
 - 経験的モデルの容易な導入
 - 実験データベースとの比較による検証
 - 大規模シミュレーションとの連携

実験データベース

- 実験家にも容易に利用できるユーザーインターフェース
- 国際互換性のあるプログラムインターフェース
- ヘリカル系への拡張
- 並列分散処理による高速化
- 拡張の容易な構成

BPSI: 核燃焼プラズマ統合コード構想

統合コード:フレームワーク

コアコードの開発・整備・公開 既存解析コードとの連携:インターフェース仕様の共通化 実験データベースとの連携:ITPA, JT-60, LHD, 中小型装置

モデル開発:新しい物理モデルの提案・実装・検証

時間スケールの異なる現象の間の相互作用 異なる空間領域の間の相互作用:コア・周辺プラズマ 未解決の問題:輸送障壁,3次元効果,輸送モデルの高度化

計算手法:ネットワーク分散並列処理

計算機クラスターにおける並列処理による高速化 計算機クラスター間の連携:計算資源の有効利用

国内

国外

US : SciDAC/FSP

EU: ITM-TF

米国の状況

- NTCC (National Transport Code Collaboration)
 - 輸送コード, モジュールライブラリ (GLF23, NCLASS, ...)
- SciDAC (Scientific Discovery through Advanced Computing)
 - 大規模シミュレーション,研究連携 (National Fusion Collaboration)
 - ° Turbulence, Extended MHD, Wave-Particle, Reconnection, Peripheral
- New SciDAC projects: Fusion Simulation Project
 - ° **2005:**
 - Center for Plasma Edge Simulation (CPES)
 - Simulation of Wave Interactions with MHD (SWIM)
 - 2006/01/10: Request for new proposals of SciDAC reseach program
 - The development of techniques to facilitate international fusion collaboration
 - The development of an integrated software environment for multi-physics, multi-scale simulations of fusion plasmas

欧州の状況

- EFDA Task Force: Integrated Transport Modelling (Dec. 2003)
- Integrated Modelling
 - Physics integration
 - Code integration
 - Discipline integration: Theorist/Modeller/Computer Scientist/Experimentalist

• Projects

- The Code Platform Project (CPP): code interface, data structure
- The Data Coordination Project (DCP): verification and validation
- Five Integrated Modelling Projects (IMPs)
 - Equilibrium and linear MHD stability
 - Non-linear MHD and disruptions
 - Transport code and discharge evolution
 - Transport processes and micro-stability
 - Heating, current drive and fast particles

TASK コードの特色

- トカマクの時間発展シミュレーション
 - モジュール構造の統合シミュレーション
 - ○様々な加熱・電流駆動機構の実装
 - ○高い移植性: UNIX系 (Linux, MacOSX, SX-OS 等)
 - MPI ライブラリを用いた並列分散処理
 - 実験データベースの利用: ITPA 分布データベース

∘ ソースコードの公開

- 核燃焼プラズマ統合コード構想のコアコード
 - 最小限の統合コード:モジュールは交換可能
 - ○インターフェースの標準化:実装の検証
 - ヘリカル系への拡張:NIFS との協力
 - ○利用者の拡大:マニュアル等の整備

• Transport Analyzing System for tokamaK

TASK/PL	データ交換	磁気面座標⇔実座標 , 分布データベース
EQ	2 次元平衡解析	固定境界,トロイダル回転効果
TR	1次元輸送解析	拡散型輸送方程式,輸送モデル
WR	幾何光学的波動解析	EC, LH: 光線追跡法,ビーム追跡法
WM	波動光学的波動解析	IC, AW: アンテナ励起,固有モード
FP	速度分布解析	相対論的,軌道平均,3次元
DP	波動分散解析	局所誘電率テンソル , 任意速度分布
LIB,MTX,MPI	共通ライブラリ	特殊関数,行列解法,MPI
開発中: TX	1次元輸送解析	流体型輸送方程式,輸送モデル
WX	積分形波動解析	FLR 効果,高次サイクロトロン高調波
TOPICS : EQU	2次元平衡解析	自由境界,高速
NBI	中性粒子ビーム	ビーム軌跡,1次元FP解析

TASK のモジュール構造

モジュール間連携機能:**TASK/PL**

- 連携機能の目的
 - モジュール間のデータ交換:
 - 標準データセット:交換の対象となるデータを限定(cf. ITPA 分布 DB)
 データ交換用インターフェース仕様(初期化,書込,読取)
 - ○モジュールの実行制御:
 - 実行制御用インターフェース仕様(初期化,初期分布,実行,表示,終了)
 共通化されたユーザーインタフェース(パラメータ入力,図形出力,他)
- データ交換用インターフェースの役割:TASK/PL
 - プラズマの現在の状況を保管
 - プラズマの時間発展を保存
 - ○ファイルへのデータ保存・ファイルからの読込
 - 実験分布データベースとのインターフェース

標準データセット(暫定版)

ショットデータ

Machine ID, Shot ID, Model ID

装置データ: (Level 1)							
RR	R	m	Geometrical major radius				
RA	a	m	Geometrical minor radius				
RB	b	m	Wall radius				
BB	В	Т	Vacuum toroidal mag. field				
RKAP	К		Elongation at boundary				
RDLT	δ		Triangularity at boundary				
RIP	$I_{ m p}$	А	Typical plasma current				
平衡データ: (Level 1)							
PSI2D	$\psi_{\rm p}(R,Z)$	Tm^2	2D poloidal magnetic flux				
PSIT	$\psi_{t}(\rho)$	Tm^2	Poloidal magnetic flux				
PSIP	$\psi_{\rm p}(\rho)$	Tm^2	Poloidal magnetic flux				
ITPSI	$I_{t}(\rho)$	Tm	Poloidal current: $B_{\phi}R$				
IPPSI	$I_{\rm p}(ho)$	Tm	Toroidal current				
PPSI	p(ho)	MPa	Plasma pressure	•			
QINV	$1/q(\rho)$		Inverse of safety factor				
計量デ・	-9						
1D:	$V'(\rho), \langle \nabla V \rangle$	$\rho(\rho), \cdots$					
2D:	q_{ii}, \cdots	4 / 7					
3D:	g_{ii}, \cdots						
運動論的プラズマデータ							
FP	$f(p, \theta_p, \rho)$)	momentum dist. fn at $\theta = 0$				

流体的プラズマデータ

NSMAX	S		Number of particle species		
PA	A_s		Atomic mass		
PZ0	Z_{0s}		Charge number		
PZ	Z_s		Charge state number		
PN	$n_s(\rho)$	m ³	Number density		
PT	$T_s(\rho)$	eV	Temperature		
PU	$u_{s\phi}(\rho)$	m/s	Toroidal rotation velocity		
QINV	$1/q(\rho)$		Inverse of safety factor		
誘雷率テン	ハノル				
CEPS	$\overleftrightarrow{\epsilon}(\rho,\chi,\zeta)$)	Local dielectric tensor		
波動電磁界データ					
CE	$E(ho,\chi,\zeta)$	V/m	Wave electric field		
СВ	$B(\rho,\chi,\zeta)$	Wb/m^2	Wave magnetic field		
光線・ビーム追跡データ					
RRAY	$R(\ell)$	m	R of ray at length ℓ		
ZRAY	$Z(\ell)$	m	Z of ray		
PRAY	$\phi(\ell)$	rad	ϕ of ray		
CERAY	$E(\ell)$	V/m	Wave electric field		
PWRAY	$P(\ell)$	W	Wave power		
DRAY	$d(\ell)$	m	Beam radius		
VRAY	$v(\ell)$	1/m	Beam curvature		

TASK コードによる解析例

TOPICS/EQU と TASK/TR を組み合わせた解析例

- TOPICS/EQU: 自由境界 2 次元平衡
- TASK/TR 拡散型1次元輸送 (CDBM + Neoclassical)
- QUEST パラメータ :

 $\circ R = 0.64 \text{ m}, a = 0.064 \text{ m}, B = 0.64 \text{ T}, I_p = 300 \text{ kA}, \text{OH+LHCD}$

Integrated Analysis of AE in ITER Plasma

Combined Analysis

- Equilibrium: TASK/EQ
- Transport: TASK/TR
 - Turbulent transport model: CDBM
 - Neoclassical transport model: NCLASS (Houlberg)
 - Heating and current profile: given profile
- Full wave analysis: TASK/WM

Stability analysis

- \circ Standard H-mode operation: $I_p = 15$ MA, $Q \sim 10$
- \circ Hybrid operation: $I_p = 12 \text{ MA}$, flat q profile above 1
- \circ Steady-state operation: $I_p = 9 \text{ MA}$, reversed shear

Standard H-mode Operation

AE in Standard H-mode Operation

-0.8

Mode structure (n = 1)^{0.8} ^{0.4} ^{0.0} ^{-0.4}

0.0 0.5 1.0 1.5 2.0 r $f_r = 95.95 \text{ kHz}$ $f_i = -1.95 \text{ kHz}$

Stabilization due to q = 1

モデル開発における課題の例

- ITER 性能予測:
 - ETB 形成機構:LH 遷移条件,ペデスタル幅, Type I 以外の ELM
 - 乱流輸送モデル:線形解析,非線形解析,帯状流,回転シア
 - ○プラズマ回転を含めた平衡・安定性解析:RWM,NTM,運動論効果
 - SOL-ダイバータ解析:コアとの結合,壁との相互作用
 - 計測モジュール・制御モジュールの開発・結合
- モデルの高度化:予測精度の向上
 - 輸送モデル:拡散型
 - 流体型:プラズマ回転,径方向電界,過渡現象
 - 運動論型:速度分布関数,加熱・電流駆動と無撞着な解析
 - 3 次元平衡: 2 次元平衡
 - 周辺部におけるリップル効果
 - 磁気島が存在する場合の平衡・安定性・輸送

統合コードの計算環境

- 必要計算資源の飛躍的増大
 - ○予測精度の向上(モジュールの増加,時間空間ステップ数の増加)
 - パラメータ数および変化範囲の拡大
 - 運転シナリオの最適化
- 並列処理による高速化
 - 利用 CPU 数にスケーラブルな高速化
 行列方程式の大規模並列ソルバーの導入
 数理科学や計算科学との協力
- さまざまなタイプの計算コードの実行
 - 計算規模に合わせた計算資源割当の最適化

最後に

- ITER 燃焼プラズマの時間発展シミュレーションならびに原型炉の設計に 向けて,統合コード開発の必要性がますます高くなってきている.
- 国内における燃焼プラズマ統合コード開発は、大学・核融合研・原子力 機構の自主的な研究協力によって進められており、統合モデリングの成 果が上がりつつある。
- ITER-BAの計算機シミュレーションセンターは、燃焼プラズマシミュレーションを実現する統合モデリングコードの組織的開発の契機となることが期待される。
- 計算機シミュレーションセンターの稼働開始に向けて、その性能を最大限に破棄できる統合コードをそれまでに開発しておくことが必要である。
- 炉工学分野におけるシミュレーションも視野に入れて,組織的なコード 開発プロジェクトを早急に立ち上げ,核融合炉開発における国際競争力 を確保することを目指す必要がある.