Present Status and Future Plan of TASK Code

A. Fukuyama

Department of Nuclear Engineering, Kyoto University

in collaboration with **M. Yagi and M. Honda**

Contents

- Recent News on Integrated Modeling
- Progress of TASK Code Development
- Future Plan of Integrated Modeling
- Summary

Recent News on Integrate Modeling

- **ITER**: Request for job application (Dec., 2006)
 - Chief Scientific Officer, Integrated Modelling: PhD, 15 years
 - Senior Scientific Officer, Transport and Confinement Physics
 - Senior Scientific Officer, Integrated Scenarios

• US: SciDAC

- 2005: New subjects
 - Center for Plasma Edge Simulation (**CPES**)
 - Simulation of Wave Interactions with MHD (SWIM)
- 2006: Request for new proposal
 - Techniques for international fusion collaboration
 - Integrated software environment for multi-physics, multi-scale simulations
- EU: ITM-TF

Integrated Tokamak Modelling TF in EU

- The Code Platform Project (CPP):
 - Code integration, End user tools
- The Data Coordination Project (DCP):
 - Data structure (XML schemas, ITM database)
 - Qualification, Verification, Data validity, and Validation
- Five Integrated Modelling Projects (IMPs)
 - Equilibrium and linear MHD stability:
 - Reconstruction, High resolution, Stability, EFIT-ITM
 - Non-linear MHD and disruptions: RWM, Sawtooth
 - Transport code and discharge evolution:
 - Common interface to transport models and boundaries
 - Transport processes and micro-stability: Benchmark
 - Heating, current drive and fast particles: Self-consistent

Example of ITM database structure

Recent Progress of TASK

• Fortran95

TASK V1.0: Fortran95 compiler required (g95, pgf95, xlf95, ifort,...)
 TASK/EQ, TASK/TR: Fortran95 (Module, Dynamic allocation)

Module structure

- Standard dataset: partially implemented
- Data exchange interface: prototype
- Execution control interface: prototype
- New module: from TOPICS by M. Azumi
 - TOPICS/EQU: Free boundary 2D equilibrium
 - **TOPICS/NBI**: Beam deposition + 1D Fokker-Planck
 - MHD stability component: coming
- Self-consistent wave analysis
- Dynamic transport analysis: by M. Honda

Modules of TASK

EQ	2D Equilibrium	Fixed/Free boundary, Toroidal rotation
TR	1D Transport	Diffusive transport, Transport models
WR	3D Geometr. Optics	EC, LH: Ray tracing, Beam tracing
WM	3D Full Wave	IC, AW: Antenna excitation, Eigenmode
FP	3D Fokker-Planck	Relativistic, Bounce-averaged
DP	Wave Dispersion	Local dielectric tensor, Arbitrary $f(v)$
PL	Data Interface	Data conversion, Profile database
LIB	Libraries	LIB, MTX, MPI

Under Development

TX Transport analysis including plasma rotation and E_r

Collaboration with TOPICS

EQUFree boundary equilibriumNBINBI heating

Structure of TASK

- Role of Module Interface
 - Data exchange between modules:
 - Standard dataset: Specify set of data (cf. ITPA profile DB)
 - Specification of data exchange interface: initialize, set, get
 - Execution control:
 - Specification of execution control interface: initialize, setup, exec, visualize, terminate
 - Uniform user interface: parameter input, graphic output
- Role of data exchange interface: TASK/PL
 - Keep present status of plasma and device
 - Store history of plasma
 - Save into file and load from file
 - Interface to experimental data base

Standard Dataset (interim)

Shot data

Machine ID, Shot ID, Model ID

Device data: (Level 1)

RR	R	m	Geometrical major radius
RA	a	m	Geometrical minor radius
RB	b	m	Wall radius
BB	В	Т	Vacuum toroidal mag. field
RKAP	К		Elongation at boundary
RDLT	δ		Triangularity at boundary
RIP	$I_{ m p}$	А	Typical plasma current

Equilibrium data: (Level 1)

PSI2D	$\psi_{\rm p}(R,Z)$	Tm^2	2D poloidal magnetic flux
PSIT	$\psi_{t}(\rho)$	Tm^2	Toroidal magnetic flux
PSIP	$\psi_{\rm p}(ho)$	Tm^2	Poloidal magnetic flux
ITPSI	$I_{\rm t}(\rho)$	Tm	Poloidal current: $2\pi B_{\phi}R$
IPPSI	$I_{\rm p}(ho)$	Tm	Toroidal current
PPSI	$p(\rho)$	MPa	Plasma pressure
QINV	$1/q(\rho)$		Inverse of safety factor

Metric data

2D: g_{ij}, \cdots

3D: g_{ij}, \cdots

Fluid plasma data

NSMAX	S	
PA	A_s	
PZ0	Z_{0s}	
ΡZ	Z_s	
PN	$n_s(\rho)$	m^3
PT	$T_s(\rho)$	eV
PU	$u_{s\phi}(\rho)$	m/s
QINV	$1/q(\rho)$	

Kinetic plasma data

f(p,	(θ_p, ρ)
	f(p,

Dielectric tensor data

CEPS	$\epsilon(ho,\chi,\zeta)$

Full wave field data

CE	E(ho
CB	$B(\rho$

Atomic mass
Charge number
Charge state number
Number density
Temperature
Toroidal rotation velocity
Inverse of safety factor

Number of particle species

momentum dist. fn at $\theta = 0$

Local dielectric tensor

 (p, χ, ζ) V/m Complex wave electric field (p, χ, ζ) Wb/m² Complex wave magnetic field

Ray/Beam tracing field data

RRAY	$R(\ell)$	m	R of ray at length ℓ
ZRAY	$Z(\ell)$	m	Z of ray at length ℓ
PRAY	$\phi(\ell)$	rad	ϕ of ray at length ℓ
CERAY	$E(\ell)$	V/m	Wave electric field at length ℓ
PWRAY	$P(\ell)$	W	Wave power at length ℓ
DRAY	$d(\ell)$	m	Beam radius at length ℓ
VRAY	$v(\ell)$	1/m	Beam curvature at length ℓ

Data Exchange Interface

• Data structure: Derived type (Fortran95): structured type

	time	plasmaf%time
	number of grid	plasmaf%nrmax
e.g.	square of grid radius	plasmaf%s(nr)
	plasma density	plasmaf%data(nr)%pn
	plasma temperature	plasmaf%data(nr)%pt

• Program interface

	Initialize	<pre>bpsd_init_data(ierr)</pre>
e.g.	Set data	<pre>bpsd_set_data('plasmaf',plasmaf,ierr)</pre>
	Get data	<pre>bpsd_get_data('plasmaf',plasmaf,ierr)</pre>

• Other functions:

• Save data into a file, Load data from a file, Plot data

Example for TASK/TR

TR INIT TR_PARM(ID,PSTR) TR_SETUP(T) TR_EXEC(DT) TR_GOUT (PSTR) TR SAVE TR LOAD TR TERM

Initialization (Default value) Parameter setup (Namelist input) Profile setup (Spatial profile, Time) **BPSX_SETUP('TR',T)** Exec one step (Time step) Plot data (Plot command) Save data in file load data from file Termination

```
BPSX_INIT('TR')
BPSX_PARM('TR', ID, PSTR)
BPSX_EXEC('TR',DT)
BPSX_GOUT('TR',PSTR)
BPSX_SAVE('TR')
BPSX_LOAD('TR')
BPSX_TERM('TR')
```

Module registration

. . .

TR STRUCT%INIT=TR INIT TR STRUCT%PARM=TR PARM TR STRUCT%EXEC=TR EXEC

```
BPSX_REGISTER('TR', TR_STRUCT)
```

Example of data structure: plasmaf

```
type bpsd_plasmaf_data
  real(8) :: pn ! Number density [m^-3]
  real(8) :: pt ! Temperature [eV]
  real(8) :: ptpr ! Parallel temperature [eV]
  real(8) :: ptpp ! Perpendicular temperature [eV]
  real(8) :: pu  ! Parallel flow velocity [m/s]
end type bpsd_plasmaf_data
type bpsd_plasmaf_type
  real(8) :: time
  real(8), dimension(:), allocatable :: s
                    ! (rho<sup>2</sup>) : normarized toroidal flux
  real(8), dimension(:), allocatable :: ginv
                    ! 1/q : inverse of safety factor
  type(bpsd_plasmaf_data), dimension(:,:), allocatable :: data
end type bpsd_plasmaf_type
```

• TR_EXEC(dt)

```
call bpsd_get_data('plasmaf',plasmaf,ierr)
call bpsd_get_data('metric1D',metric1D,ierr)
local data <- plasmaf,metric1D
advance time step dt
plasmaf <- local data
call bpsd_set_data('plasmaf',plasmaf,ierr)</pre>
```

• EQ_CALC

```
call bpsd_get_data('plasmaf',plasmaf,ierr)
local data <- plasmaf
calculate equilibrium
update plasmaf
call bpsd_set_data('plasmaf',plasmaf,ierr)
equ1D,metric1D <- local data
call bpsd_set_data('equ1D,equ1D,ierr)
call bpsd_set_data('metric1D',metric1D,ierr)</pre>
```

Example: Coupling of TASK/TR and TOPICS/EQU

- **TOPICS/EQU**: Free boundary 2D equilibrium
- **TASK/TR** Diffusive 1D transport (CDBM + Neoclassical)
- **QUEST** parameters:

 $\circ R = 0.64 \text{ m}, a = 0.04 \text{ m}, B = 0.64 \text{ T}, I_p = 300 \text{ kA}, \text{OH+LHCD}$

Transport simulation

• OH + off-axis LHCD: 200 kW

• Formation of internal transport barrier (equilibrium not solved)

Self-Consistent Wave Analysis with Modified f(v)

Modification of velocity distribution from Maxwellian

- Absorption of ICRF waves in the presence of energetic ions
- Current drive efficiency of LHCD
- NTM controllability of ECCD (absorption width)
- Self-consistent wave analysis including modification of f(v)

Self-Consistent ICRF Minority Heating Analysis

Analysis in TASK

- \circ Dielectric tensor for arbitrary f(v)
- Full wave analysis with the dielectric tensor
- Fokker-Plank analysis of full wave results
- Self-consistent iterative analysis: Preliminary
- Energetic ion tail formation
 - Broadening of power deposition profile

• 3D Equilibrium:

- Interface to equilibrium data from VMEC or HINT
- Interface to neoclassical transport coefficient codes
- Modules 3D-ready:
 - WR: Ray and beam tracing
 - WM: Full wave analysis
- Modules to be updated:
 - \circ **TR**: Diffusive transport (with an appropriate model of E_r)
 - **TX**: Dynamic transport (with neoclassical toroidal viscosity)
- Modules to be added: (by Y. Nakamura)
 - EI: Time evolution of current profile in helical geometry

Future Plan of TASK code

Short term

- PL: BPSI interface to all modules
- **EQ,TR**: Fortran95 version
- FP: Update for multi species, mpi parallel
- WM: Integral form of dielectric tensor for FLR effects

Middle range

- **EQ**: Equilibrium evolution like TSC
- **FP**: Kinetic transport analysis
- **TR**: Edge plasma model, Impurity, Neutral, MHD stability
- **EG**: Linear micro instability + Zonal flow effect

Long term

- WM: Particle bounce motion, Kinetic stability analysis
- TF: 2D transport including core and SOL
- WB: Beam propagation

Load map of TASK code

Summary

- We are developing **TASK** code as a reference core code for integrated burning plasma simulation based on transport analysis.
- We have developed a part of standard dataset, data exchange interface and execution control and implemented them in TASK code. An example of coupling between TOPICS/EQU and TASK/TR was shown, though not yet completed. Some other modules of TOPICS will be incorporated soon.
- Preliminary results of **self-consistent analysis of wave heating and current drive** describing the time evolution of the momentum distribution function and its influence on the wave propagation and absorption have been obtained.
- We need further continuous development of integrated modeling for comprehensive ITER simulation.