US-Japan JIFT Workshop on Integrated Modeling on Fusion Plasmas ORNL, Oak Ridge, USA 2007/01/29

Recent Progress in Integrate Code TASK

— Integrated Modeling of —

- RF Heating and Current Drive in Tokamaks -

A. Fukuyama

Department of Nuclear Engineering, Kyoto University

in collaboration with

S. Murakami, M. Honda, A. Sonoda, T. Yamamoto

Outline

- Integrated Simulation of Fusion Plasmas
- Progress of TASK Code Development
- Self-Consistent Analysis of RF Heating and Current Drive
- Full Wave Analysis Including FLR Effects
- Future Plan of Integrated Modeling
- Summary

Burning Plasma Simulation

One simulation code never covers all range.

Blanket, Neutronics, Tritium, Material, Heat and Fluid Flow

Integrated simulation combining modeling codes interacting each other

Integrated Tokamak Simulation

Multi-Hierarchy and Integrated Approaches

BPSI: Burning Plasma Simulation Initiative

Integrated code: TASK and TOPICS

TASK Code

- Transport Analysing System for TokamaK
- Features
 - Core of Integrated Modeling Code in BPSI
 - Modular structure
 - Reference data interface and standard data set
 - Uniform user interface
 - Various Heating and Current Drive Scheme
 - High Portability
 - **Development using CVS** (Concurrent Version System)
 - **Open Source**: http://bpsi.nucleng.kyoto-u.ac.jp/task/)
 - Parallel Processing using MPI Library
 - **Extension to Toroidal Helical Plasmas**

Recent Progress of TASK

• Fortran95

TASK V1.0: Fortran95 compiler required (g95, pgf95, xlf95, ifort,...)
 TASK/EQ, TASK/TR: Fortran95 (Module, Dynamic allocation)

Module structure

- Standard dataset: partially implemented
- Data exchange interface: prototype
- Execution control interface: prototype
- New module: from TOPICS by M. Azumi
 - TOPICS/EQU: Free boundary 2D equilibrium
 - **TOPICS/NBI**: Beam deposition + 1D Fokker-Planck
 - MHD stability component: coming
- Self-consistent wave analysis
- Dynamic transport analysis: by M. Honda

Modules of TASK

EQ	2D Equilibrium	Fixed/Free boundary, Toroidal rotation
TR	1D Transport	Diffusive transport, Transport models
WR	3D Geometr. Optics	EC, LH: Ray tracing, Beam tracing
WM	3D Full Wave	IC, AW: Antenna excitation, Eigenmode
FP	3D Fokker-Planck	Relativistic, Bounce-averaged
DP	Wave Dispersion	Local dielectric tensor, Arbitrary $f(v)$
PL	Data Interface	Data conversion, Profile database
LIB	Libraries	LIB, MTX, MPI

Under Development

TX Transport analysis including plasma rotation and E_r

Collaboration with TOPICS

EQUFree boundary equilibriumNBINBI heating

Structure of TASK

- Role of Module Interface
 - Data exchange between modules:
 - Standard dataset: Specify set of data (cf. ITPA profile DB)
 - Specification of data exchange interface: initialize, set, get
 - Execution control:
 - Specification of execution control interface: initialize, setup, exec, visualize, terminate
 - Uniform user interface: parameter input, graphic output
- Role of data exchange interface: TASK/PL
 - Keep present status of plasma and device
 - Store history of plasma
 - Save into file and load from file
 - Interface to experimental data base

Standard Dataset (interim)

Shot data

Machine ID, Shot ID, Model ID

Device data: (Level 1)

RR	R	m	Geometrical major radius
RA	a	m	Geometrical minor radius
RB	b	m	Wall radius
BB	В	Т	Vacuum toroidal mag. field
RKAP	К		Elongation at boundary
RDLT	δ		Triangularity at boundary
RIP	$I_{ m p}$	А	Typical plasma current

Equilibrium data: (Level 1)

PSI2D	$\psi_{\rm p}(R,Z)$	Tm^2	2D poloidal magnetic flux
PSIT	$\psi_{t}(\rho)$	Tm^2	Toroidal magnetic flux
PSIP	$\psi_{\rm p}(ho)$	Tm^2	Poloidal magnetic flux
ITPSI	$I_{\rm t}(\rho)$	Tm	Poloidal current: $2\pi B_{\phi}R$
IPPSI	$I_{\rm p}(ho)$	Tm	Toroidal current
PPSI	$p(\rho)$	MPa	Plasma pressure
QINV	$1/q(\rho)$		Inverse of safety factor

Metric data

2D: g_{ij}, \cdots

3D: g_{ij}, \cdots

Fluid plasma data

NSMAX	S	
PA	A_s	
PZ0	Z_{0s}	
ΡZ	Z_s	
PN	$n_s(\rho)$	m^3
PT	$T_s(\rho)$	eV
PU	$u_{s\phi}(\rho)$	m/s
QINV	$1/q(\rho)$	

Kinetic plasma data

f(p,	(θ_p, ρ)
	f(p,

Dielectric tensor data

CEPS	$\epsilon(ho,\chi,\zeta)$

Full wave field data

CE	E(ho
CB	$B(\rho$

Atomic mass
Charge number
Charge state number
Number density
Temperature
Toroidal rotation velocity
Inverse of safety factor

Number of particle species

momentum dist. fn at $\theta = 0$

Local dielectric tensor

 (p, χ, ζ) V/m Complex wave electric field (p, χ, ζ) Wb/m² Complex wave magnetic field

Ray/Beam tracing field data

RRAY	$R(\ell)$	m	R of ray at length ℓ
ZRAY	$Z(\ell)$	m	Z of ray at length ℓ
PRAY	$\phi(\ell)$	rad	ϕ of ray at length ℓ
CERAY	$E(\ell)$	V/m	Wave electric field at length ℓ
PWRAY	$P(\ell)$	W	Wave power at length ℓ
DRAY	$d(\ell)$	m	Beam radius at length ℓ
VRAY	$v(\ell)$	1/m	Beam curvature at length ℓ

Data Exchange Interface

• Data structure: Derived type (Fortran95): structured type

	time	plasmaf%time
	number of grid	plasmaf%nrmax
e.g.	square of grid radius	plasmaf%s(nr)
	plasma density	plasmaf%data(nr)%pn
	plasma temperature	plasmaf%data(nr)%pt

• Program interface

	Initialize	<pre>bpsd_init_data(ierr)</pre>
e.g.	Set data	<pre>bpsd_set_data('plasmaf',plasmaf,ierr)</pre>
	Get data	<pre>bpsd_get_data('plasmaf',plasmaf,ierr)</pre>

• Other functions:

• Save data into a file, Load data from a file, Plot data

Example for TASK/TR

TR INIT TR_PARM(ID,PSTR) TR_SETUP(T) TR_EXEC(DT) TR_GOUT (PSTR) TR SAVE TR LOAD TR TERM

Initialization (Default value) Parameter setup (Namelist input) Profile setup (Spatial profile, Time) **BPSX_SETUP('TR',T)** Exec one step (Time step) Plot data (Plot command) Save data in file load data from file Termination

```
BPSX_INIT('TR')
BPSX_PARM('TR', ID, PSTR)
BPSX_EXEC('TR',DT)
BPSX_GOUT('TR',PSTR)
BPSX_SAVE('TR')
BPSX_LOAD('TR')
BPSX_TERM('TR')
```

Module registration

. . .

TR STRUCT%INIT=TR INIT TR STRUCT%PARM=TR PARM TR STRUCT%EXEC=TR EXEC

```
BPSX_REGISTER('TR', TR_STRUCT)
```

Example of data structure: plasmaf

```
type bpsd_plasmaf_data
  real(8) :: pn ! Number density [m^-3]
  real(8) :: pt ! Temperature [eV]
  real(8) :: ptpr ! Parallel temperature [eV]
  real(8) :: ptpp ! Perpendicular temperature [eV]
  real(8) :: pu  ! Parallel flow velocity [m/s]
end type bpsd_plasmaf_data
type bpsd_plasmaf_type
  real(8) :: time
  real(8), dimension(:), allocatable :: s
                    ! (rho<sup>2</sup>) : normarized toroidal flux
  real(8), dimension(:), allocatable :: ginv
                    ! 1/q : inverse of safety factor
  type(bpsd_plasmaf_data), dimension(:,:), allocatable :: data
end type bpsd_plasmaf_type
```

• TR_EXEC(dt)

```
call bpsd_get_data('plasmaf',plasmaf,ierr)
call bpsd_get_data('metric1D',metric1D,ierr)
local data <- plasmaf,metric1D
advance time step dt
plasmaf <- local data
call bpsd_set_data('plasmaf',plasmaf,ierr)</pre>
```

• EQ_CALC

```
call bpsd_get_data('plasmaf',plasmaf,ierr)
local data <- plasmaf
calculate equilibrium
update plasmaf
call bpsd_set_data('plasmaf',plasmaf,ierr)
equ1D,metric1D <- local data
call bpsd_set_data('equ1D,equ1D,ierr)
call bpsd_set_data('metric1D',metric1D,ierr)</pre>
```

Example: Coupling of TASK/TR and TOPICS/EQU

- **TOPICS/EQU**: Free boundary 2D equilibrium
- **TASK/TR** Diffusive 1D transport (CDBM + Neoclassical)
- **QUEST** parameters:

 $\circ R = 0.64 \text{ m}, a = 0.04 \text{ m}, B = 0.64 \text{ T}, I_p = 300 \text{ kA}, \text{OH+LHCD}$

Transport simulation

• OH + off-axis LHCD: 200 kW

• Formation of internal transport barrier (equilibrium not solved)

Self-Consistent Wave Analysis with Modified f(v)

Modification of velocity distribution from Maxwellian

- Absorption of ICRF waves in the presence of energetic ions
- Current drive efficiency of LHCD
- NTM controllability of ECCD (absorption width)
- Self-consistent wave analysis including modification of f(v)

Self-Consistent ICRF Minority Heating Analysis

Analysis in TASK

- \circ Dielectric tensor for arbitrary f(v)
- Full wave analysis with the dielectric tensor
- Fokker-Plank analysis of full wave results
- Self-consistent iterative analysis: Preliminary
- Energetic ion tail formation
 - Broadening of power deposition profile

FLR Effects in Full Waves Analyses

- Several approaches to describe the FLR effects.
- Differential operators: $k_{\perp}\rho \rightarrow i\rho\partial/\partial r_{\perp}$

• This approach cannot be applied to the case $k_{\perp}\rho \gtrsim 1$. • Extension to the third and higher harmonics is difficult.

- Spectral method: Fourier transform in inhomogeneous direction
 - This approach can be applied to the case $k_{\perp}\rho > 1$.
 - All the wave field spectra are coupled with each other.
 - Solving a dense matrix equation requires large computer resources.
- Integral operators: $\int \epsilon(x x') \cdot E(x') dx'$
 - This approach can be applied to the case $k_{\perp}\rho > 1$
 - Correlations are localized within several Larmor radii
 - Necessary to solve a large band matrix

Full Wave Analysis Using an Integral Form of Dielectric Tensor

• Maxwell's equation:

$$\nabla \times \nabla \times \boldsymbol{E}(\boldsymbol{r}) + \frac{\omega^2}{c^2} \int \overleftarrow{\epsilon}(\boldsymbol{r}, \boldsymbol{r}') \cdot \boldsymbol{E}(\boldsymbol{r}') d\boldsymbol{r} = \mu_0 \boldsymbol{j}_{ext}(\boldsymbol{r})$$

• Integral form of dielectric tensor: $\overleftarrow{\epsilon}(\mathbf{r}, \mathbf{r'})$

Integration along the unperturbed cyclotron orbit

- **1D analysis in tokamaks** (in the direction of major radius)
 - \circ To confirm the applicability of an integral form of dielectric tensor
 - $^{\circ}$ Another formulation in the lowest order of ho/L
 - Sauter O, Vaclavik J, Nucl. Fusion **32** (1992) 1455.
- 2D analysis in tokamaks

• In more realistic configurations

One-Dimensional Analysis

ICRF minoring heating with α -particles ($n_D : n_{He} = 0.96 : 0.02$)

Absorption by α may be overestimated by differential approach.

Coordinates

- Magnetic coordinate system: (ψ, χ, ζ)
- Local Cartesian coordinate system: (s, p, h)
- Fourier expansion: poloidal and toroidal mode numbers, *m*, *n*
- Perturbed current

$$\boldsymbol{j}(\boldsymbol{r},t) = -\frac{q}{m} \int \mathrm{d}\boldsymbol{v} \, q \boldsymbol{v} \, \int_{-\infty}^{\infty} \mathrm{d}t' \left[\boldsymbol{E}(\boldsymbol{r}',t') + \boldsymbol{v}' \times \boldsymbol{B}(\boldsymbol{r}',t') \right] \cdot \frac{\partial f_0(\boldsymbol{v}')}{\partial \boldsymbol{v}'}$$

• The time evolution of χ and ζ due to gyro-motion

$$\begin{cases} \chi(t-\tau) = \chi(t) + \frac{\partial \chi}{\partial s} \frac{v_{\perp}}{\omega_{c}} \left\{ \cos(\omega_{c}\tau + \theta_{0}) - \cos\theta_{0} \right\} + \frac{\partial \chi}{\partial p} \frac{v_{\perp}}{\omega_{c}} \left\{ \sin(\omega_{c}\tau + \theta_{0}) - \sin\theta_{0} \right\} - \frac{\partial \chi}{\partial h} v_{\parallel}\tau \\ \zeta(t-\tau) = \zeta(t) + \frac{\partial \zeta}{\partial s} \frac{v_{\perp}}{\omega_{c}} \left\{ \cos(\omega_{c}\tau + \theta_{0}) - \cos\theta_{0} \right\} + \frac{\partial \zeta}{\partial p} \frac{v_{\perp}}{\omega_{c}} \left\{ \sin(\omega_{c}\tau + \theta_{0}) - \sin\theta_{0} \right\} - \frac{\partial \zeta}{\partial h} v_{\parallel}\tau \end{cases}$$

Transformation of Integral Variables

• Transformation from the velocity space variables (v_{\perp}, θ_0) to the particle position s' and the guiding center position s_0 .

• Jacobian:
$$J = \frac{\partial(v_{\perp}, \theta_0)}{\partial(s', s_0)} = -\frac{\omega_c^2}{v_{\perp} \sin \omega_c \tau}$$

• Integration over τ

 $^{\rm o}$ Integral in time calculated by the Fourier series expansion with cyclotron period, $2\pi/\omega_{\rm c}$

• Integration over v_{\parallel}

 Interaction between wave and particles along the magnetic field lines described by the plasma dispersion function. • Induced current:

$$\overleftrightarrow{\mu}^{-1} \cdot \begin{pmatrix} J_1^{mn}(\psi) \\ J_2^{mn}(\psi) \\ J_3^{mn}(\psi) \end{pmatrix} = \int du' \int du_0 \,\,\overleftrightarrow{\sigma}(u, u', u_0) \cdot \begin{pmatrix} E_1^{m'n}(\psi) \\ E_2^{m'n}(\psi) \\ E_3^{m'n}(\psi) \end{pmatrix}$$

• Electrical conductivity:

$$\overleftrightarrow{\sigma}(u,u',u_0) = -i\left(\frac{1}{2\pi}\right)^{\frac{7}{2}} n_0 \frac{q^2}{m} \sum_{m'n'} \sum_l \int_0^{2\pi} \mathrm{d}\chi \int_0^{2\pi} \mathrm{d}\zeta \exp i\left\{(m'-m)\chi + (n'-n)\zeta\right\} \overleftrightarrow{H}(u,u',\chi)$$

• Matrix coefficients:

$$\begin{split} H_{1i} &= \left(Q_{3}\mu_{1i}^{-1} - u'Q_{1}\mu_{2i}^{-1}\right)\frac{\sqrt{\pi}}{k_{\parallel}v_{T_{\parallel}}}Z(\eta_{l}) + \left[-\frac{Q_{1}v_{T_{\perp}}}{v_{T_{\parallel}}^{2}}\mu_{3i}^{-1} + \left(1 - \frac{v_{T_{\perp}}^{2}}{v_{T_{\parallel}}^{2}}\right)\left\{Q_{3}\kappa_{2i} + Q_{1}u'\kappa_{1i}\right\}\right]\sqrt{\frac{\pi}{2}}\frac{1}{k_{\parallel}}Z'(\eta_{l}) \\ H_{2i} &= \left(-Q_{2}u\mu_{1i}^{-1} + Q_{0}uu'\mu_{2i}^{-1}\right)\frac{\sqrt{\pi}}{k_{\parallel}v_{T_{\parallel}}}Z(\eta_{l}) + \left[\frac{Q_{0}uv_{T_{\perp}}}{v_{T_{\parallel}}^{2}}\mu_{3i}^{-1} - \left(1 - \frac{v_{T_{\perp}}^{2}}{v_{T_{\parallel}}^{2}}\right)u\left\{Q_{2}\kappa_{2i} + Q_{0}u'\kappa_{1i}\right\}\right]\sqrt{\frac{\pi}{2}}\frac{1}{k_{\parallel}}Z'(\eta_{l}) \\ H_{3i} &= \left(-\frac{Q_{2}}{v_{T_{\perp}}}\mu_{1i}^{-1} + \frac{Q_{0}u'}{v_{T_{\perp}}}\mu_{2i}^{-1}\right)\sqrt{\frac{\pi}{2}}\frac{1}{k_{\parallel}}Z'(\eta_{l}) + \left[-\frac{Q_{0}}{v_{T_{\parallel}}}\mu_{3i}^{-1} + \frac{v_{T_{\parallel}}}{v_{T_{\perp}}}\left(1 - \frac{v_{T_{\perp}}^{2}}{v_{T_{\parallel}}^{2}}\right)\left\{Q_{2}\kappa_{2i} + Q_{0}u'\kappa_{1i}\right\}\right]\frac{\sqrt{\pi}}{k_{\parallel}}\eta_{l}Z'(\eta_{l}) \\ H_{3i} &= \left(-\frac{Q_{2}}{v_{T_{\perp}}}\mu_{1i}^{-1} + \frac{Q_{0}u'}{v_{T_{\perp}}}\mu_{2i}^{-1}\right)\sqrt{\frac{\pi}{2}}\frac{1}{k_{\parallel}}Z'(\eta_{l}) + \left[-\frac{Q_{0}}{v_{T_{\parallel}}}\mu_{3i}^{-1} + \frac{v_{T_{\parallel}}}{v_{T_{\perp}}}\left(1 - \frac{v_{T_{\perp}}^{2}}{v_{T_{\parallel}}^{2}}\right)\left\{Q_{2}\kappa_{2i} + Q_{0}u'\kappa_{1i}\right\}\right]\frac{\sqrt{\pi}}{k_{\parallel}}\eta_{l}Z'(\eta_{l}) \\ H_{3i} &= \left(-\frac{Q_{2}}{v_{T_{\perp}}}\mu_{1i}^{-1} + \frac{Q_{0}u'}{v_{T_{\perp}}}\mu_{2i}^{-1}\right)\sqrt{\frac{\pi}{2}}\frac{1}{k_{\parallel}}Z'(\eta_{l}) + \left[-\frac{Q_{0}}{v_{T_{\parallel}}}\mu_{3i}^{-1} + \frac{v_{T_{\parallel}}}{v_{T_{\perp}}}\left(1 - \frac{v_{T_{\perp}}^{2}}{v_{T_{\parallel}}^{2}}\right)\left\{Q_{2}\kappa_{2i} + Q_{0}u'\kappa_{1i}\right\}\right]\frac{\sqrt{\pi}}{k_{\parallel}}\eta_{l}Z'(\eta_{l}) \\ H_{3i} &= \left(-\frac{Q_{2}}{v_{T_{\perp}}}\mu_{1i}^{-1} + \frac{Q_{0}u'}{v_{T_{\perp}}}\mu_{2i}^{-1}\right)\sqrt{\frac{\pi}{2}}\frac{1}{k_{\parallel}}Z'(\eta_{l}) + \left[-\frac{Q_{0}}{v_{T_{\parallel}}}\mu_{3i}^{-1} + \frac{v_{T_{\parallel}}}{v_{T_{\perp}}}}\left(1 - \frac{v_{T_{\perp}}^{2}}{v_{T_{\parallel}}^{2}}\right)\left\{Q_{2}\kappa_{2i} + Q_{0}u'\kappa_{1i}\right\}\right]\frac{\sqrt{\pi}}{k_{\parallel}}\eta_{l}Z'(\eta_{l})$$

Kernel functions

$$\begin{aligned} & \mathcal{Q}_{\left\{\begin{array}{c}0\\1\\2\\3\end{array}\right\}}(u,u',\chi_0,l) = \int_0^{2\pi} d\lambda \frac{1}{|\sin\lambda|} \begin{cases} 1\\V_1\\V_2\\V_1V_2 \end{cases} \\ & \times \exp i \left[\frac{k_{\perp}v_{T_{\perp}}}{\omega_c} \left\{(V_2 - V_1)\cos\alpha - (u - u')\sin\alpha\right\} + l\lambda - \frac{V_0^2}{2}\right] \\ & V_0^2 = \left(\frac{u + u'}{2}\right)^2 \frac{1}{\cos^2\frac{1}{2}\lambda} + \left(\frac{u - u'}{2}\right)^2 \frac{1}{\sin^2\frac{1}{2}\lambda} \qquad \overleftarrow{h} = \frac{1}{J\omega} \begin{pmatrix} 0 & -n & m'\\n & 0 & i\frac{\partial}{\partial\psi}\\-m' & -i\frac{\partial}{\partial\psi} & 0 \end{pmatrix} \\ & V_1 = \frac{u - u'}{2} \frac{1}{\tan\frac{1}{2}\lambda} - \frac{u + u'}{2} \tan\frac{1}{2}\lambda \qquad u \equiv \frac{s - s_0}{v_{T_{\perp}}} \omega_c \\ & V_2 = \frac{u - u'}{2} \frac{1}{\tan\frac{1}{2}\lambda} + \frac{u + u'}{2} \tan\frac{1}{2}\lambda \qquad u' \equiv \frac{s' - s_0}{v_{T_{\perp}}} \omega_c \end{aligned}$$

where $\overleftarrow{\kappa} = \overleftarrow{\mu}^{-1} \cdot \overleftarrow{g} \cdot \overleftarrow{h}$, $\overleftarrow{\mu}$ is the transformation matrix for $(s, p, h) \rightarrow (\psi, \chi, \zeta)$, and \overleftarrow{g} is the metric tensor.

Consistent Formulation of Integral Full Wave Analysis

Analysis of wave propagation

• Dielectric tensor:

$$\nabla \times \nabla \times \boldsymbol{E}(\boldsymbol{r}) - \frac{\omega^2}{c^2} \int \mathrm{d}\boldsymbol{r}_0 \int \mathrm{d}\boldsymbol{r}' \, \frac{\boldsymbol{p}'}{m\gamma} \frac{\partial f_0(\boldsymbol{p}', \boldsymbol{r}_0)}{\partial \boldsymbol{p}'} \cdot \boldsymbol{K}_1(\boldsymbol{r}, \boldsymbol{r}', \boldsymbol{r}_0) \cdot \boldsymbol{E}(\boldsymbol{r}') = \mathrm{i}\,\omega\mu_0 \boldsymbol{j}_{\mathrm{ext}}$$

where r_0 is the gyrocenter position.

Analysis of modification of momentum distribution function
 Quasi-linear operator

$$\frac{\partial f_0}{\partial t} + \left(\frac{\partial f_0}{\partial p}\right)_{\boldsymbol{E}} + \frac{\partial}{\partial p} \int d\boldsymbol{r} \int d\boldsymbol{r}' \boldsymbol{E}(\boldsymbol{r}) \, \boldsymbol{E}(\boldsymbol{r}') \cdot \boldsymbol{K}_2(\boldsymbol{r}, \boldsymbol{r}', \boldsymbol{r}_0) \cdot \frac{\partial f_0(\boldsymbol{p}', \boldsymbol{r}_0, t)}{\partial \boldsymbol{p}'} = \left(\frac{\partial f_0}{\partial \boldsymbol{p}}\right)_{\text{col}}$$

• The kernels K_1 and K_2 are closely related and localized in the region $|\mathbf{r} - \mathbf{r}_0| \leq \rho$ and $|\mathbf{r}' - \mathbf{r}_0| \leq \rho$.

• 3D Equilibrium:

- Interface to equilibrium data from VMEC or HINT
- Interface to neoclassical transport coefficient codes
- Modules 3D-ready:
 - WR: Ray and beam tracing
 - WM: Full wave analysis
- Modules to be updated:
 - \circ **TR**: Diffusive transport (with an appropriate model of E_r)
 - **TX**: Dynamic transport (with neoclassical toroidal viscosity)
- Modules to be added: (by Y. Nakamura)
 - EI: Time evolution of current profile in helical geometry

Road map of TASK code

Summary

- We are developing **TASK** code as a reference core code for integrated burning plasma simulation based on transport analysis.
- We have developed a part of standard dataset, data exchange interface and execution control and implemented them in TASK code. An example of coupling between TOPICS/EQU and TASK/TR was shown, though not yet completed. Some other modules of TOPICS will be incorporated soon.
- Preliminary results of self-consistent analysis of wave heating and current drive describing the time evolution of the momentum distribution function and Integro-differential full wave analysis including FLR effects have been obtained.
- Further continuous development of integrated modeling is needed for comprehensive ITER simulation.