理論共同研究「周辺プラズマと炉心プラズマの統合モデリング」 研究会「境界層プラズマの理論・シミュレーション研究」 合同研究作業会 核融合科学研究所 2007/02/19

TASKコードによる統合モデリング

福山 淳 , 本多 充 京都大学 大学院工学研究科

- トカマク統合シミュレーション
- TASK コードの現状
- TASK/TX による輸送シミュレーション
- 今後の課題

核燃焼プラズマシミュレーション

多階層連結と多要素統合

モデル開発における課題の例

- ITER 性能予測:
 - ETB 形成機構:LH 遷移条件,ペデスタル幅,Type I 以外の ELM
 - 乱流輸送モデル:線形解析,非線形解析,帯状流,回転シア
 - ○プラズマ回転を含めた平衡・安定性解析:RWM,NTM,運動論効果
 - SOL-ダイバータ解析:コアとの結合,壁との相互作用
 - 計測モジュール・制御モジュールの開発・結合
- モデルの高度化:予測精度の向上
 - 輸送モデル:拡散型
 - 流体型:プラズマ回転,径方向電界,過渡現象
 - 運動論型:速度分布関数,加熱・電流駆動と無撞着な解析
 - 3 次元平衡: 2 次元平衡
 - 周辺部におけるリップル効果
 - 磁気島が存在する場合の平衡・安定性・輸送

TASK コードの特色

Transport Analyzing System for tokamaK

- トカマクの時間発展シミュレーション
 - モジュール構造の統合シミュレーション
 - ○様々な加熱・電流駆動機構の実装
 - ○高い移植性:UNIX系(Linux, MacOSX, SX-OS等)
 - MPI ライブラリを用いた並列分散処理
 - ○実験データベースの利用:ITPA 分布データベース
 - ∘ ソースコードの公開
- 核燃焼プラズマ統合コード構想のコアコード
 - 最小限の統合コード:モジュールは交換可能
 - ○インターフェースの標準化:実装の検証
 - ヘリカル系への拡張:NIFS との協力
 - ○利用者の拡大:マニュアル等の整備

TASK コードの構成

TASK/PL	データ交換	磁気面座標⇔実座標 , 分布データベース
EQ	2 次元平衡解析	固定境界,トロイダル回転効果
TR	1次元輸送解析	拡散型輸送方程式 , 輸送モデル
WR	幾何光学的波動解析	EC, LH: 光線追跡法,ビーム追跡法
WM	波動光学的波動解析	IC, AW: アンテナ励起,固有モード
FP	速度分布解析	相対論的,軌道平均,3次元
DP	波動分散解析	局所誘電率テンソル , 任意速度分布
LIB,MTX,MPI	共通ライブラリ	特殊関数,行列解法,MPI
開発中: TX	1次元輸送解析	流体型輸送方程式 , 輸送モデル
WX	積分形波動解析	FLR 効果 , 高次サイクロトロン高調波
EG	微視的不安定性解析	ジャイロ運動論,線形安定性
TOPICS : EQU	2次元平衡解析	自由境界,高速
NBI	中性粒子ビーム	ビーム軌跡 , 1 次元 F P 解析

TASK のモジュール構造

モジュール間連携機能:**TASK/PL**

- 連携機能の目的
 - モジュール間のデータ交換:
 - 標準データセット:交換の対象となるデータを限定(cf. ITPA 分布 DB)
 データ交換用インターフェース仕様(初期化,書込,読取)
 - ○モジュールの実行制御:
 - 実行制御用インターフェース仕様(初期化,初期分布,実行,表示,終了)
 共通化されたユーザーインタフェース(パラメータ入力,図形出力,他)
- データ交換用インターフェースの役割:TASK/PL
 - プラズマの現在の状況を保管
 - プラズマの時間発展を保存
 - ○ファイルへのデータ保存・ファイルからの読込
 - 実験分布データベースとのインターフェース

標準データセット(暫定版)

ショットデータ

Machine ID, Shot ID, Model ID

装置デ・	ータ: (Level	1)		
RR	R	m	Geometrical major radius	
RA	a	m	Geometrical minor radius	
RB	b	m	Wall radius	
BB	В	Т	Vacuum toroidal mag. field	
RKAP	К		Elongation at boundary	
RDLT	δ		Triangularity at boundary	
RIP	$I_{ m p}$	А	Typical plasma current	
平衡デ・	ータ: (Level	1)		i
PSI2D	$\psi_{\rm p}(R,Z)$	Tm^2	2D poloidal magnetic flux	
PSIT	$\psi_{t}(\rho)$	Tm^2	Poloidal magnetic flux	
PSIP	$\psi_{\rm p}(\rho)$	Tm^2	Poloidal magnetic flux	
ITPSI	$I_{t}(\rho)$	Tm	Poloidal current: $B_{\phi}R$	
IPPSI	$I_{\rm p}(ho)$	Tm	Toroidal current	
PPSI	p(ho)	MPa	Plasma pressure	•
QINV	$1/q(\rho)$		Inverse of safety factor	
計量デ・	-9			
1D:	$V'(\rho), \langle \nabla V \rangle$	$\rho(\rho), \cdots$		
2D:	q_{ii}, \cdots	4 / 7		
3D:	g_{ii}, \cdots			
運動論的	りプラズマテ	データ		
FP	$f(p, \theta_p, \rho)$)	momentum dist. fn at $\theta = 0$	

流体的プラズマデータ

NSMAX	S		Number of particle species
PA	A_s		Atomic mass
PZ0	Z_{0s}		Charge number
PZ	Z_s		Charge state number
PN	$n_s(\rho)$	m ³	Number density
PT	$T_s(\rho)$	eV	Temperature
PU	$u_{s\phi}(\rho)$	m/s	Toroidal rotation velocity
QINV	$1/q(\rho)$		Inverse of safety factor
誘電率テン	シル		
CEPS	$\overleftrightarrow{\epsilon}(\rho,\chi,\zeta)$)	Local dielectric tensor
波動電磁界	ネデータ		
CE	$E(ho,\chi,\zeta)$	V/m	Wave electric field
СВ	$B(\rho,\chi,\zeta)$	Wb/m ²	Wave magnetic field
光線・ビー	- ム追跡デ	ータ	
RRAY	$R(\ell)$	m	R of ray at length ℓ
ZRAY	$Z(\ell)$	m	Z of ray
PRAY	$\phi(\ell)$	rad	ϕ of ray
CERAY	$E(\ell)$	V/m	Wave electric field
PWRAY	$P(\ell)$	W	Wave power
DRAY	$d(\ell)$	m	Beam radius
VRAY	$v(\ell)$	1/m	Beam curvature

Data Exchange Interface

• Data structure: Derived type (Fortran95): structured type

	time	plasmaf%time
	number of grid	plasmaf%nrmax
e.g.	square of grid radius	plasmaf%s(nr)
	plasma density	plasmaf%data(nr)%pn
	plasma temperature	plasmaf%data(nr)%pt

• Program interface

	Initialize	<pre>bpsd_init_data(ierr)</pre>
e.g.	Set data	<pre>bpsd_set_data('plasmaf',plasmaf,ierr)</pre>
	Get data	<pre>bpsd_get_data('plasmaf',plasmaf,ierr)</pre>

• Other functions:

• Save data into a file, Load data from a file, Plot data

• Example for TASK/TR

TR_INIT	Initialization (Default value)	<pre>BPSX_INIT('TR')</pre>
TR_PARM(ID,PSTR)	Parameter setup (Namelist input)	BPSX_PARM('TR', ID, PSTR
TR_SETUP(T)	Profile setup (Spatial profile, Time)	BPSX_SETUP('TR',T)
TR_EXEC(DT)	Exec one step (Time step)	BPSX_EXEC('TR',DT)
TR_GOUT (PSTR)	Plot data (Plot command)	BPSX_GOUT('TR',PSTR)
TR_SAVE	Save data in file	BPSX_SAVE('TR')
TR_LOAD	load data from file	BPSX_LOAD('TR')
TR_TERM	Termination	BPSX_TERM('TR')

• Module registration

. . .

TR_STRUCT%INIT=TR_INIT TR_STRUCT%PARM=TR_PARM TR_STRUCT%EXEC=TR_EXEC

BPSX_REGISTER('TR',TR_STRUCT)

Example of data structure: plasmaf

```
type bpsd_plasmaf_data
  real(8) :: pn ! Number density [m^-3]
  real(8) :: pt ! Temperature [eV]
  real(8) :: ptpr ! Parallel temperature [eV]
  real(8) :: ptpp ! Perpendicular temperature [eV]
  real(8) :: pu  ! Parallel flow velocity [m/s]
end type bpsd_plasmaf_data
type bpsd_plasmaf_type
  real(8) :: time
  real(8), dimension(:), allocatable :: s
                    ! (rho<sup>2</sup>) : normarized toroidal flux
  real(8), dimension(:), allocatable :: qinv
                    ! 1/q : inverse of safety factor
  type(bpsd_plasmaf_data), dimension(:,:), allocatable :: data
end type bpsd_plasmaf_type
```

• TR_EXEC(dt)

```
call bpsd_get_data('plasmaf',plasmaf,ierr)
call bpsd_get_data('metric1D',metric1D,ierr)
local data <- plasmaf,metric1D
advance time step dt
plasmaf <- local data
call bpsd_set_data('plasmaf',plasmaf,ierr)</pre>
```

• EQ_CALC

```
call bpsd_get_data('plasmaf',plasmaf,ierr)
local data <- plasmaf
calculate equilibrium
update plasmaf
call bpsd_set_data('plasmaf',plasmaf,ierr)
equ1D,metric1D <- local data
call bpsd_set_data('equ1D,equ1D,ierr)
call bpsd_set_data('metric1D',metric1D,ierr)</pre>
```

トロイダルプラズマにおける輸送現象の階層

- TASK/TR: 拡散型輸送方程式:
 - 流束・勾配関係: 運動方程式の定常解
 - これまでの一般的な輸送シミュレーションの手法
- TASK/TX: 流体型輸送方程式:
 - 方程式系
 - ― 磁気面平均された二流体方程式
 - 運動方程式に慣性項を含む
 - ガウスの法則を含めたマクスウェル方程式と結合
 - プラズマ回転や径電場も含めた過渡的輸送解析
 - 径電場: 径方向の力の釣り合い
 - ― ポロイダル回転: 運動方程式
 - ― トロイダル回転: 運動方程式
 - 運動方程式の定常解から導かれる輸送行列ではなく,運動方程式を直接解く.
 - コアとSOLを含んだ輸送シミュレーション
 - ― セパラトリクスを含めた解析により ETB を記述
 - 。原子過程を考慮した解析

1次元流体型輸送コード: TASK/TX

- 流体型輸送方程式 (TASK/TX)
 - 。磁気面平均された方程式系
 - 電子とバルクイオンの二流体方程式
 - 連続の式
 - 運動方程式(径方向,ポロイダル方向,トロイダル方向)
 - エネルギー輸送方程式
 - 新古典輸送
 - ― ポロイダル粘性 ⇒ 全ての新古典効果が現れる
 - **NCLASS** モジュール, Hirshman and Sigmar モデル
 - 乱流輸送
 - ― 電子とバルクイオンのポロイダル運動量交換を通して,固有の両極性拡散
 - 熱拡散と垂直粘性
 - マクスウェル方程式
 - 。 ビームイオン成分の減速方程式
 - 。二群中性粒子の拡散方程式

モデル方程式

• 電子とイオン (*s* = e, i) の二流体方程式: $\frac{\partial n_s}{\partial t} = -\frac{1}{r}\frac{\partial}{\partial r}(rn_s u_{sr}) + S_s$ $\frac{\partial}{\partial t}(m_s n_s u_{sr}) = -\frac{1}{r}\frac{\partial}{\partial r}(rm_s n_s u_{sr}^2) + \frac{1}{r}m_s n_s u_{s\theta}^2 - \frac{\partial}{\partial r}n_s T_s + e_s n_s (E_r + u_{s\theta}B_{\phi} - u_{s\phi}B_{\theta})$ $\frac{\partial}{\partial t}(m_s n_s u_{s\theta}) = -\frac{1}{r^2} \frac{\partial}{\partial r} (r^2 m_s n_s u_{sr} u_{s\theta}) + \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^3 n_s m_s \mu_s \frac{\partial}{\partial r} \frac{u_{s\theta}}{r} \right) + e_s n_s (E_\theta - u_{sr} B_\phi)$ $+F_{s\theta}^{NC}+F_{s\theta}^{C}+F_{s\theta}^{W}+F_{s\theta}^{L}+F_{s\theta}^{IN}+F_{s\theta}^{CX}$ $\frac{\partial}{\partial t} \left(m_s n_s u_{s\phi} \right) = -\frac{1}{r} \frac{\partial}{\partial r} (r m_s n_s u_{sr} u_{s\phi}) + \frac{1}{r} \frac{\partial}{\partial r} \left(r n_s m_s \mu_s \frac{\partial}{\partial r} u_{s\phi} \right) + e_s n_s (E_\phi + u_{sr} B_\theta)$ $+F_{s\phi}^{C}+F_{s\phi}^{W}+F_{s\phi}^{L}+F_{s\phi}^{IN}+F_{s\phi}^{CX}$ $\frac{\partial}{\partial t}\frac{3}{2}n_sT_s = -\frac{1}{r}\frac{\partial}{\partial r}r\left(\frac{5}{2}u_{sr}n_sT_s - \frac{3}{2}n_s\chi_s\frac{\partial}{\partial r}T_e\right) + e_sn_s(E_\theta u_{s\theta} + E_\phi u_{s\phi})$ $+P_{s}^{C}+P_{s}^{L}+P_{s}^{R}+P_{s}^{RF}$

輸送モデル

• 新古典輸送: ポロイダルプラズマ回転による平行粘性力

$$F_{s\theta}^{\rm NC} \equiv -n_s m_s v_{\rm NCs} u_{s\theta} = -\frac{\left\langle B^2 \right\rangle \hat{\mu}_{11}^{si}}{n_s m_s B_{\theta}^2} n_s m_s u_{s\theta}$$

 $\hat{\mu}_{11}^{si}$: NCLASS モジュールで計算された粘性係数 W. A. Houlberg et al. PoP 4 (1997) 3230

ポロイダル粘性力によって引き起こされる新古典現象

径方向: 新古典拡散とウェアピンチ磁力線方向:抵抗率と自発電流

• 乱流拡散

○ 乱流揺動場を通じた電子とイオンのポロイダル運動量交換

○ 固有の両極性拡散(電子の粒子束 = イオンの粒子束)

$$F_{e\theta}^{W} = -F_{i\theta}^{W} = -\frac{e^2 B_{\phi}^2 D_e}{T_e} n_e \left(u_{e\theta} - \frac{B_{\theta}}{B_{\phi}} u_{e\phi} \right)$$
$$F_{e\phi}^{W} = -F_{i\phi}^{W} = \frac{e^2 B_{\phi}^2 D_e}{T_e} \frac{B_{\theta}}{B_{\phi}} n_e \left(u_{e\theta} - \frac{B_{\theta}}{B_{\phi}} u_{e\phi} \right)$$

• 垂直粘性

 ・非両極性粒子束(電子の粒子束 ≠ イオンの粒子束): $\partial^3 p_s / \partial r^3$ に比例

 ・熱拡散

SOLプラズマのモデリング

• **SOL**での平行損失

。磁力線に沿った粒子損失,運動量損失,イオンの熱損失:対流的

― 音速時間スケールでの減衰時間

$$v_{\rm L} = \frac{k_{\rm L} C_{\rm s}}{2\pi q R} \quad (a < r < b)$$

。磁力線に沿った電子熱損失:伝導的

— 古典熱拡散係数

$$v_{\rm L} = k_{\rm L} \frac{\chi_{\parallel}}{(2\pi qR)^2} = k_{\rm L} \frac{\kappa_0 T_{\rm e}^{5/2}}{n_{\rm e} (2\pi qR)^2} \quad (a < r < b)$$

定常電子束

• 定常電子束

- モデル方程式において慣性項をゼロに
- モデル方程式に含まれる物理が明らかになる
- 径方向速度

$$u_{er} = -\frac{1}{1+\alpha} \frac{\bar{v}_{e} + v_{eNC}}{n_{e}m_{e}\Omega_{e\phi}^{2}} \frac{\partial p}{\partial r} - \frac{\alpha}{1+\alpha} \frac{E_{\phi}}{B_{\theta}} + \frac{1}{1+\alpha} \frac{1}{n_{e}m_{e}\Omega_{e\phi}} \left(F_{e\theta}^{W} + \frac{B_{\phi}}{B_{\theta}} \alpha F_{e\phi}^{W} \right)$$
$$+ \frac{\alpha}{1+\alpha} \frac{1}{\Omega_{e\phi}} \frac{B_{\phi}}{B_{\theta}} \left[v_{eb}u_{b\phi} - (\bar{v}_{e} - v_{ei})u_{i\phi} \right] + \frac{1}{1+\alpha} \frac{\bar{v}_{e} + v_{eNC} - v_{ei}}{\Omega_{e\phi}} u_{i\theta}$$

where $\bar{\nu}_e \equiv \nu_{ei} + \nu_{eb} + \nu_L + \nu_{0e}$,

$$\alpha \equiv \frac{\bar{\nu}_{\rm e} + \nu_{\rm eNC}}{\bar{\nu}_{\rm e}} \frac{B_{\theta}^2}{B_{\phi}^2}, \quad \Omega_{\rm e\phi} \equiv \frac{eB_{\phi}}{m_{\rm e}}, \quad \text{and} \quad \nu_{\rm eb} \equiv \frac{n_{\rm b}m_{\rm b}}{n_{\rm e}m_{\rm e}} \nu_{\rm be}$$

- 。新古典粘性による減衰率 $\bar{\nu}_{eNC}$
- 因子*a*はトロイダル性の寄与
- ○右辺第一,二,三項はそれぞれ新古典拡散,ウェアピンチ,乱流拡散
- 第四項はビームイオンの運動量入力による新古典ピンチ

トロイダル速度

$$\begin{split} u_{e\phi} &= -\frac{1}{\bar{v}_{e}} \left[\frac{1}{1+\alpha} \frac{e}{m_{e}} E_{\phi} - \frac{1}{1+\alpha} \frac{B_{\theta}}{B_{\phi}} \frac{\bar{v}_{e} + v_{eNC}}{n_{e}m_{e}\Omega_{e\phi}} \frac{\partial p}{\partial r} + \frac{1}{1+\alpha} \frac{1}{n_{e}m_{e}} \left(\frac{B_{\theta}}{B_{\phi}} F_{e\theta}^{W} - F_{e\phi}^{W} \right) - \frac{v_{eb}}{1+\alpha} u_{b\phi} \\ &+ \frac{1}{1+\alpha} \frac{B_{\theta}}{B_{\phi}} (\bar{v}_{e} + v_{eNC} - v_{ei}) u_{i\theta} - \frac{v_{ei} + \alpha \bar{v}_{e}}{1+\alpha} u_{i\phi} \right], \\ \circ \text{ 右辺第-, } \Box \text{ , } \Xi {\baselineskip { = 1 \ otherwise in the matrix in the matrix$$

• ポロイダル速度も同様にして得られる.

モデル方程式は主要な新古典効果を含んでいる!

TASK/TXで用いた数値技法

- 有限要素法 (FEM): 線形補間関数の使用
 - Streamline Upwind Petrov-Galerkin (SUPG)法 ⇒ 一階微分項による数値振動を抑制
 - $\circ r$ 座標を $s = r^2$ 座標へ写像 \Longrightarrow 磁気軸での自然境界条件の適用が容易に
 - 線形補間関数の特性に基づき,境界条件をうまく満たすよう変数を選ぶ
 - セパラトリクス近傍にメッシュを集積し,高い空間解像度を得る
- 時間発展法
 - 完全陰解法
 - 高い数値安定性
 - ― 行列方程式を解くことによる計算時間の増大
 - 行列集中化 ⇒⇒ 数値拡散を避けるために時間発展項の係数行列を対角成分に集中化
 - 非線形方程式の解法にピカール法を用いた
 - 行列方程式の計算ソルバ: LAPACK_DGBSV
 - バンド行列におけるLU分解アルゴリズム
 - ― 高い信頼性と高い計算効率

典型的なオーミック放電分布: *t* = 50 ms

JFT-2Mを模擬したプラズマ:電子と軽水素からなる

 $R = 1.3 \text{ m}, a = 0.35 \text{ m}, b = 0.4 \text{ m}, B_{\phi b} = 1.3 \text{ T}, I_p = 0.2 \text{ MA}, S_{\text{puff}} = 5.0 \times 10^{18} \text{ m}^{-2} \text{s}^{-1}$ $\gamma = 0.8, Z_{\text{eff}} = 2.0,$ 乱流輸送係数分布を固定

乱流を無視した場合の新古典輸送の特性: *t* = 250 ms

• 新古典輸送の特性が明らかに

○ 乱流拡散係数と乱流粘性をゼロ,温度分布を固定

 $\circ I_{p} = 0.12 \text{ MA} \& S_{gas} = 3.0 \times 10^{18} \text{ m}^{-2} \text{s}^{-1}$ を除いては, 典型分布と同じパラメータ

- 準定常状態においてセパラトリクス周辺に急峻な圧力勾配・密度ピーキング
 - 新古典粘性から生じるウェアピンチによる密度ピーキング
 - ○中性粒子の電離によるSOLでの内向き粒子束

乱流駆動摩擦力による拡散

- TASK/TXの拡散モデルの妥当性を確認
 - 連続の式にあらわに粒子拡散項を仮定しない

径方向の力の釣り合いを通した,圧力勾配によるポロイダル流 ⇒ 乱流駆動ポロイダル摩 擦力 ⇒ ポロイダル方向の運動方程式における径方向速度の変化 ⇒ 粒子拡散

○ 現象をわかりやすくするため新古典粘性をゼロに

• 図(a) で明らかな拡散現象を確認

○ 乱流摩擦力もゼロにした図(b)では拡散がみられず,垂直粘性によるピンチのみ

• 我々のモデルで粒子拡散は記述できている

新古典粘性で記述する新古典輸送の妥当性

• 定常流束から抵抗率と自発電流が導かれる.

◦ どちらも TASK/TX では陽に計算されていない.

定常状態での解析解は得られている。

$$\eta = \frac{m_{\rm e}(1+\alpha)\bar{\nu}_{\rm e}}{n_{\rm e}e^2}, \quad \dot{j}_{\rm BS} = -\frac{\alpha}{1+\alpha}\frac{1}{B_{\theta}}\frac{dp}{dr}$$

○新古典熱流束の効果を最小化するためにコアで平坦な温度分布を仮定
 ○初期分布に対する NCLASS からの出力と解析解の計算結果を比較

• 極めてよい一致

○ 異なった新古典効果の実装法にもかかわらずかなり近い結果が得られた.

 $D_{e} \ge I_{p}$ を変化させたときのプラズマのパラメータ依存性

- 粒子拡散係数の変化に伴う分布の変化
 - $O_{e} = 0.01, 0.03, 0.05, 0.10 \,\mathrm{m}^{2}/\mathrm{s}$ の場合
 - 粒子拡散 D_eの増加に伴う密度平坦化
 - セパラトリクス近傍に存在する V 字型の E_r が D_e の増加とともに消滅 ⇒ $\frac{\partial p}{\partial r}$ の緩和が原因

- プラズマ電流の変化に伴う分布の変化
 - *I*_p = 0.15, 0.20, 0.25 MA の場合
 - $\circ I_p$ の増加に伴い,磁気軸近傍での密度と,温度が増大し, E_r が減少

加熱前,順方向 (co) NBI,逆方向 (ctr) NBIの場合

 $\circ E_r$ の変化は**NBI**の方向, すなわち $u_{i\phi}$ に依存している.

° Co: $u_{b\phi} \nearrow \Rightarrow u_{i\phi} \nearrow \Rightarrow E_r \land$, $u_{b\phi} \land \Rightarrow u_{i\phi} \land \Rightarrow u_{e\theta} \land \& u_{e\phi} \land \Rightarrow u_{er} \Rightarrow 密度平坦化$

° Ctr: $u_{b\phi} \searrow \Rightarrow u_{i\phi} \searrow \Rightarrow E_r \searrow, u_{b\phi} \searrow \Rightarrow u_{i\phi} \searrow \Rightarrow u_{e\theta} \searrow \& u_{e\phi} \searrow \Rightarrow u_{er} \Rightarrow 密度ピーキング$

JFT-2M実験との比較

Ref. K. Ida et al., PRL 68 (1992) 182

Counter NB入射時における D_e依存性

- NB 入射時の密度分布は乱流駆動粒子束と新古典粒子束の釣り合いで決まっている.
 - 乱流駆動力が大きくなると,ピンチを上回る粒子拡散により密度ピーキングは無くなる.
 - ○新古典の影響が大きい場合,ピンチにより密度ピーキングが見られる.
- Counter NB 入射時に,拡散係数を0.01から0.03まで0.01ずつ変化させる.
 - *D*_e = 0.02 で NBI 前の分布と同じ形状
 - 。 $D_{e} = 0.03$ では完全に粒子拡散の影響が強くなり、ピーキングは見られない.
 - 一方,径電場はセパラトリクス周辺のピークを除いてほとんど変化がない.

TASK/TX コードの開発のまとめ

- TASK/TX:トカマクプラズマのポロイダル回転,トロイダル回転,径電場の形成を記述 するためにTASK/TXを開発した.TASK/TXは二流体方程式,連続の式,熱輸送方程式, マクスウェル方程式などを同時に解いている.
- 数値手法: セパラトリクス近傍での空間高分解能を得るために,線形補間関数を用いた FEMを使用した.SUPG法の導入と径方向座標の変数変換により,コードの数値安定性が大幅に増した.
- 新古典輸送:新古典粘性の計算にはNCLASSモジュールを用いた.新古典輸送を表現する我々の手法の妥当性が,NCLASSとの比較によって確かめられた.
- NBI: JFT-2Mの実験パラメータを用いて, NBI加熱に伴う密度分布変化を解析した.その結果,実験と同様のco-NBI時における密度平坦化とctr-NBI時における密度ピーキングが得られた.

TASK の開発計画 (1)

TASK の開発計画 (2)

炉心プラズマと周辺プラズマの結合

- 径方向モデル: 径方向1次元, ポロイダル方向磁気面平均
 - TASK/TX: 磁力線方向損失 (対流,熱伝導)
- •磁力線方向モデル:ポロイダル方向1次元,径方向分布仮定
 - 5 点モデル: JAEA
- 2 次元流体モデル:
 - SONIC: JAEA
 - **B2-EIRENE:**
 - **M3D:**
- 2次元ジャイロ運動論モデル:
 - PARASOL: JAEA
 - XGC: New York U
 - TEMPEST: LLNL

最後に

- ITER 燃焼プラズマの時間発展シミュレーションならびに原型炉の設計に 向けて,統合コード開発の必要性がますます高くなってきている.
- 当面,周辺プラズマについては,2次元モデルとのベンチマークテスト を行った上で,1次元モデルの利用が現実的?
- 今後の課題
 - 周辺プラズマ2次元モデルと炉心プラズマ1次元モデルとの整合性
 - 炉心プラズマ 2 次元モデルの開発
 - 周辺プラズマにおける新古典輸送モデル
 - 周辺プラズマにおける乱流輸送モデル
 - プラズマ壁相互作用の定量的モデル化