3rd International Conference on the Frontiers of Plasma Physics and Technology Bangkok, Thailand 2007/03/07

Recent Progress in Integrated Modeling of Tokamak Plasmas

A. Fukuyama

Department of Nuclear Engineering, Kyoto University

in collaboration with

S. Murakami, M. Honda, A. Sonoda, T. Yamamoto Department of Nuclear Engineering, Kyoto University

M. Yagi

Research Institute of Applied Mathematics, Kyushu University

Outline

- Integrated Simulation of Tokamak Plasmas
- Integrated Tokamak Modeling Code TASK
- Self-Consistent Analysis of RF Heating and Current Drive
- Transport Simulation (Diffusive and Dynamic)
- Alfv'en Eigenmode Excited by Energetic Ions
- Summary

• Why needed?

- To predict the behavior of burning plasmas in tokamaks
- \circ To develop reliable and efficient schemes to control them
- What is needed?
 - Simulation describing:
 - Whole plasma (core & edge & divertor & wall-plasma)
 - Whole discharge
 - (startup & sustainment & transients events & termination)
 - Reasonable accuracy
- (validation by experiments)

(still limited)

Reasonable computer resources

• How can we do?

- Gradual increase of understanding and accuracy
- Organized development of simulation system

Simulation of Tokamak Plasmas

covers all range.

Integrated simulation combining modeling codes interacting each other

Integrated Tokamak Simulation

International Activities for Integrated Modeling

- **JAPAN**: Burning Plasma Simulation Initiative (BPSI)
 - TASK: Kyoto University
 - **TOPICS-IB**: JAEA (Japan Atomic Energy Agency)
- EU: Integrated Tokamak Modelling Task Force (ITM-TF) of EFDA
 - The Code Platform Project (CPP): Code integration, End user tools
 - The Data Coordination Project (DCP): Data structure, Validation
 - Five Integrated Modelling Projects (IMPs):
 - Equilibrium, MHD, Transport, Turbulence, Actuators
- US: Scientific Discovery through Advanced Computing (SciDAC)
 - Integrated simulation of magnetic fusion systems
 - Wave+MHD, Plasma Edge, Turbulence, Extended MHD, Wave-Plasma
- **ITER**: **ITPA-CDBM-IMAGE WG**: to be started

TASK Code

- Transport Analysing System for TokamaK
- Features
 - Core of Integrated Modeling Code in BPSI
 - Modular structure
 - Reference data interface and standard data set
 - Uniform user interface
 - Various Heating and Current Drive Scheme
 - High Portability
 - **Development using CVS** (Concurrent Version System)
 - **Open Source**: http://bpsi.nucleng.kyoto-u.ac.jp/task/
 - Parallel Processing using MPI Library
 - **Extension to Toroidal Helical Plasmas**

Structure of TASK

- Role of Module Interface
 - Data exchange between modules:
 - Standard dataset: Specify set of data (cf. ITPA profile DB)
 - Specification of data exchange interface: initialize, set, get
 - Execution control:
 - Specification of execution control interface: initialize, setup, exec, visualize, terminate
 - Uniform user interface: parameter input, graphic output
- Role of data exchange interface: TASK/PL
 - Keep present status of plasma and device
 - Store history of plasma
 - Save into file and load from file
 - Interface to experimental data base

Standard Dataset (at present)

Shot data

Machi	ne ID, S	hot ID, Mo	del ID
Device d	data: (Le	evel 1)	
RR	R	m	Geometrical major radius
RA	a	m	Geometrical minor radius
RB	b	m	Wall radius
BB	В	Т	Vacuum toroidal mag. field
RKAP	К		Elongation at boundary
RDLT	δ		Triangularity at boundary
RIP	$I_{\rm p}$	А	Typical plasma current

Equilibrium data: (Level 1)

PSI2D	$\psi_{\rm p}(R,Z)$	Tm^2	2D poloidal magnetic flux
PSIT	$\psi_{t}(\rho)$	Tm^2	Toroidal magnetic flux
PSIP	$\psi_{\rm p}(ho)$	Tm^2	Poloidal magnetic flux
ITPSI	$I_{\rm t}(\rho)$	Tm	Poloidal current: $2\pi B_{\phi}R$
IPPSI	$I_{\rm p}(\rho)$	Tm	Toroidal current
PPSI	$p(\rho)$	MPa	Plasma pressure
QINV	$1/q(\rho)$		Inverse of safety factor

Metric data

2D: g_{ij}, \cdots

3D: g_{ij}, \cdots

Fluid plasma data

NSMAX	S	
PA	A_s	
PZ0	Z_{0s}	
PZ	Z_s	
PN	$n_s(\rho)$	m^3
PT	$T_s(\rho)$	eV
PU	$u_{s\phi}(\rho)$	m/s
QINV	$1/q(\rho)$	

Kinetic plasma data

f(p,	θ_p, ρ
	f(p,

Dielectric tensor data

CEPS	$\epsilon(ho,\chi,\zeta)$

Full wave field data

CE	E(ho
CB	$B(\rho$

Atomic mass
Charge number
Charge state number
Number density
Temperature
Toroidal rotation velocity
Inverse of safety factor

Number of particle species

momentum dist. fn at $\theta = 0$

Local dielectric tensor

 (p, χ, ζ) V/m Complex wave electric field (p, χ, ζ) Wb/m² Complex wave magnetic field

Ray/Beam tracing field data

RRAY	$R(\ell)$	m	R of ray at length ℓ
ZRAY	$Z(\ell)$	m	Z of ray at length ℓ
PRAY	$\phi(\ell)$	rad	ϕ of ray at length ℓ
CERAY	$E(\ell)$	V/m	Wave electric field at length ℓ
PWRAY	$P(\ell)$	W	Wave power at length ℓ
DRAY	$d(\ell)$	m	Beam radius at length ℓ
VRAY	$v(\ell)$	1/m	Beam curvature at length ℓ

Self-Consistent Wave Analysis with Modified f(v)

Modification of velocity distribution from Maxwellian

Absorption of ICRF waves in the presence of energetic ions

• Self-consistent wave analysis including modification of f(v)

	Biologithe territer for a sitial \mathbf{y} $f(\mathbf{c})$	
WM	Full wave analysis with the dielectric tensor	E(r)
FP	Fokker-Plank analysis with the wave field	$f(\boldsymbol{v})$
loop	Self-consistent iterative analysis	

NP

Self-Consistent Analysis of ICRF Minority Heating

• Energetic ion tail formation

• Broadening of power deposition profile

Level of Transport Simulation

• Diffusive transport equation: TASK/TR

- Diffusion equation for plasma density
- Flux-Gradient relation
- Conventional transport analysis

• Dynamical transport equation: TASK/TX:

- Continuity equation and equation of motion for plasma density
- Flux-averaged fluid equation
- Plasma rotation and transient phenomena
- Kinetic transport equation: TASK/FP:
 - Gyrokinetic equation for momentum distribution function
 - Bounce-averaged Fokker-Plank equation
 - Modification of momentum distribution

Diffusive Transport Analysis: TASK/TR

- Transport Equation Based on Gradient-Flux Relation
 - Multi thermal species: e.g. Electron, D, T, He
 - Density, thermal energy, (toroidal rotation)
 - \circ Two beam components: Beam ion, Energetic α
 - Density, toroidal rotation
 - Neutral: Two component (cold and hot), Diffusion equation
 Impurity: Thermal species or fixed profile

Transport Model

- Neoclassical: Wilson, Hinton & Hazeltine, Sauter, NCLASS
- Turbulent: CDBM (current diffusive ballooning mode), GLF23 (V1.61), IFS/PPPL, Weiland

Interface to Experimental Data

• UFILE (ITPA profile DB)

Heat Transport Simulation of ITER Scenarios

1D Dynamic Transport Code: TASK/TX

• **Dynamic Transport Equations** (TASK/TX)

M. Honda and A. Fukuyama, submitted to JCP

- A set of flux-surface averaged equations
- \circ Two fluid equations for electrons and ions
 - Continuity equations
 - Equations of motion (radial, poloidal and toroidal)
 - Energy transport equations
- Maxwell's equations
- Slowing-down equations for beam ion component
- Diffusion equations for two-group neutrals

Neoclassical transport

Parallel viscous force due to a poloidal plasma rotation

$$F_{s\theta}^{\rm NC} \equiv -n_s m_s v_{\rm NCs} u_{s\theta} = -\frac{\langle B^2 \rangle \hat{\mu}_{11}^{si}}{n_s m_s B_{\theta}^2} n_s m_s u_{s\theta}$$

 $\hat{\mu}_{11}^{si}$: viscosity coefficient from the NCLASS module • **Diffusion, resistivity, Ware pinch and bootstrap current**

Turbulent diffusion

Poloidal momentum exchange between electrons and ions
Intrinsic ambipolar flux (electron particle flux = ion particle flux)

$$F_{e\theta}^{W} = -F_{i\theta}^{W} = -\frac{e^2 B_{\phi}^2 D_e}{T_e} n_e \left(u_{e\theta} - \frac{B_{\theta}}{B_{\phi}} u_{e\phi} \right)$$

• Perpendicular viscosity: Non-ambipolar particle flux

Typical Ohmic Plasma Profiles at t = 50 ms

• JFT-2M like plasma composed of electron and hydrogen

 $R = 1.3 \text{ m}, a = 0.35 \text{ m}, b = 0.4 \text{ m}, B_{\phi b} = 1.3 \text{ T}, I_p = 0.2 \text{ MA}, S_{\text{puff}} = 5.0 \times 10^{18} \text{ m}^{-2} \text{s}^{-1}$

Density Profile Modification due to NBI Injection

- Modification of *n* and E_r profile depending on the direction of NBI, viz. $u_{i\phi}$
 - Co:Density flattening
 - Counter:Density peaking

Integrated Analysis of Alfvén Eigen Mode

- Combined Analysis
 - Equilibrium: TASK/EQ
 - Transport: TASK/TR
 - Turbulent transport model: CDBM
 - Neoclassical transport model: NCLASS (Houlberg)
 - Heating and current profile: given profile
 - Full wave analysis: TASK/WM
 - Excitation by energetic alpha particles
 - Damping at the Alfvén resonance

Stability analysis

 \circ High Performance Scenario: $I_p = 15 \text{ MA}, Q \sim 10$

ITER High Performance Scenario

AE in High Performance Scenario

Mode structure (n = 1)0.8 E_{θ} m=-1 0.4 0.0 -0.4 -0.8 0.0 0.5 1.0 1.5 2.0 $f_r = 95.95 \,\text{kHz}$ $f_i = -1.95 \, \text{kHz}$

Stabilization due to q = 1

Road map of TASK code

Summary

- It is necessary to develop **integrated tokamak simulation code** to predict the behavior of burning plasmas in ITER.
- We are developing an integrated code, **TASK**, as a reference core code for BPSI activity in Japan.
- We have shown several examples of **integrated analysis**
 - Self-consistent analysis of ICRF heating
 - Integrated simulation of ITER scenarios
 - Density profile modification due to the NBI injection
 - Analysis of Alfv'en eigenmode in a ITER plasma
- Further continuous development of integrated modeling is needed for **comprehensive ITER simulation**.