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Introduction(1)

ICRF Waves in Burning Plasmas
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• Both ICRF waves and fusion reaction generate energetic ions and
are affected by the energetic ions.

• In the start up phase of ITER plasmas, the role of ICRF waves is
important, time-evolving, and sensitive to the plasma conditions



Introduction(2)

Gyrokinetic Behavior of Energetic Ions

ICRF waves
Energetic

ions

Non-Maxwellian
velocity distribution

Large orbit size

• Self-consistent analysis of non-Maxwellian velocity distribution func-
tion is necessary.

• Finite gyroradius and finite orbit size affect the behavior of ICRF
waves.



Introduction(3)

Comprehensive Modeling of Burning Plasmas

ICRF waves
Energetic

ions
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Transport
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Bulk plasma

• Energetic ions interact with bulk plasmas through, for example, trans-
port processes and orbit loss.

• Alfvén eigenmodes may affect the energetic ions themselves.

• Integrated comprehensive modeling of burning plasmas is inevitable.



Introduction (4)

• Analysis of ICRF waves in burning plasma requires
◦ Full wave analysis
◦ Non-Maxwellian velocity distribution function
◦ Finite gyroradius effect
◦ Integrated modeling

• Integrated approach using the TASK code



TASK Code

• Transport Analysing System for TokamaK

• Features
◦ A Core of Integrated Modeling Code in BPSI
— Modular structure, Unified Standard data interface
◦ Various Heating and Current Drive Scheme
— Full wave analysis for IC and AW
— Ray and beam tracing for EC and LH
— 3D Fokker-Planck analysis
◦ High Portability
◦ Development using CVS
◦ Open Source
◦ Parallel Processing using MPI Library
◦ Extension to Toroidal Helical Plasmas



Modules of TASK

PL Data Interface Data conversion, Profile database
EQ 2D Equilibrium Fixed/Free boundary, Toroidal rotation
TR 1D Transport Diffusive transport, Transport models
WR 3D Geometr. Optics EC, LH: Ray tracing, Beam tracing
WM 3D Full Wave IC, AW: Antenna excitation, Eigenmode
FP 3D Fokker-Planck Relativistic, Bounce-averaged
DP Wave Dispersion Local dielectric tensor, Arbitrary f (u)
LIB Libraries LIB, MTX, MPI

Under Development

TX Transport analysis including plasma rotation and Er
EG Gyrokinetic linear stability analysis

Imported from TOPICS

EQU Free boundary equilibrium
NBI NBI heating



Modular Structure of TASK
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Wave Dispersion Analysis : TASK/DP

• Various Models of Dielectric Tensor↔ε (ω, k; r):

◦ Resistive MHD model
◦ Collisional cold plasma model
◦ Collisional warm plasma model
◦ Kinetic plasma model (Maxwellian, non-relativistic)
◦ Kinetic plasma model (Arbitrary f (u), relativistic)
◦ Gyro-kinetic plasma model (Maxwellian)

• Numerical Integration in momentum space: Arbitrary f (u)

◦ Relativistic Maxwellian
◦ Output of TASK/FP: Fokker-Planck code



Full wave analysis: TASK/WM

•magnetic surface coordinate: (ψ, θ, ϕ)

• Boundary-value problem of Maxwell’s equation

∇ × ∇ × E = ω
2

c2
↔ε · E + iωμ0 jext

• Kinetic dielectric tensor: ↔ε
◦Wave-particle resonance: Z[(ω − nωc)/k‖vth]
◦ Finite gyroradius effect: Reductive =⇒ Integral (ongoing)

• Poloidal and toroidal mode expansion

• FDM: =⇒ FEM (onging)

• Eigenmode analysis: Complex eigen frequency which maximize
wave amplitude for fixed excitation proportional to electron density



Fokker-Planck Analysis : TASK/FP

• Fokker-Planck equation
for velocity distribution function f (p‖, p⊥, ψ, t)

∂ f
∂t
= E( f ) +C( f ) + Q( f ) + L( f )

◦ E( f ): Acceleration term due to DC electric field
◦ C( f ): Coulomb collision term
◦ Q( f ): Quasi-linear term due to wave-particle resonance
◦ L( f ): Spatial diffusion term

• Bounce-averaged: Trapped particle effect, zero banana width

• Relativistic: momentum p, weakly relativistic collision term

• Nonlinear collision: momentum or energy conservation

• Three-dimensional: spatial diffusion (neoclassical, turbulent)



Self-Consistent Wave Analysis with Modified f (u)

• Modification of velocity distribution from Maxwellian

◦ Energetic ions generated by ICRF waves
◦ Alpha particles generated by fusion reaction
◦ Fast ions generated by NB injection

• Self-consistent wave analysis including modification of f (u)



Preliminary Results

• Tail formation by ICRF minority heating

Wave pattern

Quasi-linear Diffusion Momentum Distribution
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Finite Gyroradius Effects in Full Waves Analyses

• Several approaches to describe the finite gyroradius effects.

• Differential operators: k⊥ρ→ iρ∂/∂r⊥
◦ This approach cannot be applied to the case k⊥ρ � 1.
◦ Extension to the third and higher harmonics is difficult.

• Spectral method: Fourier transform in inhomogeneous direction

◦ This approach can be applied to the case k⊥ρ > 1.
◦ All the wave field spectra are coupled with each other.
◦ Solving a dense matrix equation requires large computer resources.

• Integral operators:
∫
ε(x − x′) · E(x′)dx′

◦ This approach can be applied to the case k⊥ρ > 1
◦ Correlations are localized within several gyroradii
◦ Necessary to solve a large band matrix



Full Wave Analysis
Using an Integral Form of Dielectric Tensor

• Maxwell’s equation:

∇ × ∇ × E(r) +
ω2

c2

∫
↔ε (r, r′) · E(r′)dr = μ0Jext(r)

• Integral form of dielectric tensor: ↔ε (r, r′)
◦ Integration along the unperturbed cy-

clotron orbit

• 1D analysis in tokamaks
◦ To confirm the applicability

◦ Similar formulation in the lowest order
of ρ/L

— Sauter O, Vaclavik J, Nucl. Fusion 32
(1992) 1455.
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One-Dimensional Analysis (1)

ICRF minoring heating without energetic particles (nH/nD = 0.1)

Differential form Integral form
[V/m]

Ex

Ey

[W/m2]

PH

PDPe

[V/m]

Ex

Ey

PH

Pe PD

[W/m 2]

R0 = 1.31m

a = 0.35m

B0 = 1.4T

Te0 = 1.5keV

TD0 = 1.5keV

TH0 = 1.5keV

ns0 = 1020m−3

ω/2π = 20MHz

Differential approach is applicable



One-Dimensional Analysis (2)

ICRF minoring heating with energetic particles (nH/nD = 0.1)

Differential form Integral form
[V/m]

Ex

Ey

[W/m 2]

Pe

PH

PD

[V/m]

Ex

Ey

[W/m 2]

PH

Pe

PD

R0 = 1.31m

a = 0.35m

B0 = 1.4T

Te0 = 1keV

TD0 = 1keV

TH0 = 100keV

ns0 = 1020m−3

ω/2π = 20MHz

Differential approach cannot be applied since k⊥ρi > 1.



One-Dimensional Analysis (3)

ICRF minoring heating with α-particles (nD : nHe = 0.96 : 0.02)
Differential form Integral form

[V/m]

Ex

Ey

[W/m 2]

Pe
PD

PHe

[V/m]

Ex

Ey

[W/m 2]

PD

PHe

Pe

R0 = 3.0m

a = 1.2m

B0 = 3T

Te0 = 10keV

TD0 = 10keV

Tα0 = 3.5MeV

ns0 = 1020m−3

ω/2π = 45MHz

Absorption by α may be over- or under-estimated by differential
approach.



3D Formulation

• Coordinates
◦Magnetic coordinate system: (ψ, χ, ζ)
◦ Local Cartesian coordinate system: (s, p, b)
◦ Fourier expansion: poloidal and toroidal mode numbers, m, n

• Perturbed current
J(r, t) = − q

m

∫
du qu

∫ ∞
−∞

dt′
[
E(r′, t′) + u′ × B(r′, t′)

] · ∂ f0(u′)
∂u′

• Maxwell distribution function
◦ Anisotropic Maxwell distribution with T⊥ and T‖ :

f0(s0, u) = n0

(
m

2πT⊥

)3/2 (
T⊥
T‖

)1/2

exp

[
− v2⊥

2v2
T⊥
− v2

‖
2v2

T‖

]



Variable Transformations

• Transformation of Integral Variables
◦ Transformation from the velocity space

variables (v⊥, θ0) to the particle position
s′ and the guiding center position s0.

◦ Jacobian: J =
∂(v⊥, θ0)
∂(s′, s0)

= − ω2
c

v⊥ sinωcτ
.

s'

t'

t

s0 s

θp
v

◦ Express v⊥ and θ0 by s′ and s0 using τ = t − t′, e.g.,

v⊥ sin(ωcτ + θ0) =
ωc

v⊥
s − s′

2
1

tan 1
2ωcτ

+
ωc

v⊥

(
s + s′

2
− s0

)
tan

1
2
ωcτ

• Integration over τ: Fourier expansion with cyclotron motion

• Integration over v‖: Plasma dispersion function



Final Form of Induced Current

• Induced current:

·
⎛
⎝Jmns (s)
Jmnp (s)
Jmnb (s)

⎞
⎠ = ∫

ds′
∑
m′n′

↔σm′n′mn(s, s′) ·
⎛
⎝Em

′n′
s (s′)

Em
′n′

p (s′)
Em

′n′
b (s′)

⎞
⎠

• Electrical conductivity:

↔σm′n′mn(s, s′) = −in0
q2

m

∑
�

∫
ds0

∫ 2π

0
dχ0

∫ 2π

0
dζ0 exp i

{
(m′ − m)χ0 + (n′ − n)ζ0

} ↔
H �(s, s

′, s0, χ0, ζ0)

• Matrix coefficients:
↔
H �(s, s

′, s0, χ0, ζ0)

◦ Four kinds of Kernel functions including s, s′, s0 and harmonics
number �

— The kernel functions are localized within several thermal gyro-
radii.

◦ Plasma dispersion function



Kernel Functions

• Kernel Function and its integrals

F(100)
0 F(100)

1



Status of extension to 3D configuration

• In a homogeneous plasma, usual formula including th Bessel func-
tions can be recovered.

• Kernel functions are the same as the 1D case,

• FEM formulation is required for convolution integral.

• Development of the FEM version of TASK/WM is ongoing (al-
most complete).

• Integral operator code in 3D configuration is waiting for the FEM
version of TASK/WM.



Consistent Formulation of Integral Full Wave Analysis

• Full wave analysis for arbitrary velocity distribution function
◦ Dielectric tensor:
∇ × ∇ × E(r) − ω

2

c2

∫
dr0

∫
dr′

p′

mγ
∂ f0(p′, r0)

∂p′
· K1(r, r′, r0) · E(r′) = iωμ0 jext

where r0 is the gyrocenter position.

• Fokker-Planck analysis including finite gyroradius effects
◦ Quasi-linear operator
∂ f0
∂t
+

(
∂ f0
∂p

)
E
+
∂

∂p

∫
dr

∫
dr′E(r) E(r′) ·K2(r, r′, r0) · ∂ f0(p′, r0, t)

∂p′
=

(
∂ f0
∂p

)
col

• The kernels K1 and K2 are closely related and localized in the re-
gion |r − r0| � ρ and |r′ − r0| � ρ.

• To be challenged



Summary

• For comprehensive analyses of ICRF heating in burning plas-
mas, time-evolution of the velocity distribution functions and
the finite gyroradius effects have to be consistently included.
For this purpose, the extension of the integrated code TASK is
ongoing.

• Self-consistent analysis including modification of f (p)
◦ Full wave analysis with arbitrary velocity distribution function and

Fokker-Planck analysis using full wave field are available. Pre-
liminary result of self-consistent analysis was obtained.

• 3D full wave analysis including the finite gyroradius effects:

◦ 1D analysis elucidated the importance of the gyroradius effects
of energetic ions. Formulation was extended to a 2D configura-
tion. Implementation is waiting for the FEM version of TASK/WM.


