17th Topical Conference on Radio Frequency Power in Plasmas Clearwater, FL, USA 2007/05/07

Integrated Full Wave Analysis of ICRF Waves in Burning Plasmas

A. Fukuyama

Department of Nuclear Engineering, Kyoto University, Kyoto 606-8501, Japan

in collaboration with

BPSI Working Group

Outline

- 1. Introduction
- 2. ICRF wave analysis in integrated modeling of tokamaks
- 3. Time evolution of velocity distribution function
- 4. Finite gyroradius effects
- 5. Integral formulation of full wave analysis
- 6. Summary

Introduction(1)

ICRF Waves in Burning Plasmas

- Both ICRF waves and fusion reaction generate energetic ions and are affected by the energetic ions.
- In the start up phase of ITER plasmas, the role of ICRF waves is important, time-evolving, and sensitive to the plasma conditions

Introduction(2)

Gyrokinetic Behavior of Energetic Ions

- Self-consistent analysis of non-Maxwellian velocity distribution function is necessary.
- Finite gyroradius and finite orbit size affect the behavior of ICRF waves.

Introduction(3)

Comprehensive Modeling of Burning Plasmas

- Energetic ions interact with bulk plasmas through, for example, transport processes and orbit loss.
- Alfvén eigenmodes may affect the energetic ions themselves.
- Integrated comprehensive modeling of burning plasmas is inevitable.

Introduction (4)

- Analysis of ICRF waves in burning plasma requires
 - Full wave analysis
 - Non-Maxwellian velocity distribution function
 - Finite gyroradius effect
 - Integrated modeling
- Integrated approach using the TASK code

TASK Code

- Transport Analysing System for TokamaK
- Features
 - A Core of Integrated Modeling Code in BPSI
 - Modular structure, Unified Standard data interface
 - Various Heating and Current Drive Scheme
 - Full wave analysis for IC and AW
 - Ray and beam tracing for EC and LH
 - 3D Fokker-Planck analysis
 - High Portability
 - Development using CVS
 - Open Source
 - Parallel Processing using MPI Library
 - Extension to Toroidal Helical Plasmas

Modules of TASK

PL	Data Interface	Data conversion, Profile database
EQ	2D Equilibrium	Fixed/Free boundary, Toroidal rotation
TR	1D Transport	Diffusive transport, Transport models
WR	3D Geometr. Optics	EC, LH: Ray tracing, Beam tracing
WM	3D Full Wave	IC, AW: Antenna excitation, Eigenmode
FP	3D Fokker-Planck	Relativistic, Bounce-averaged
DP	Wave Dispersion	Local dielectric tensor, Arbitrary $f(v)$
LIB	Libraries	LIB, MTX, MPI

Under Development

TX	Transport analysis including plasma rotation and E_r
EG	Gyrokinetic linear stability analysis

Imported from TOPICS

EQU Free boundary equilibriumNBI heating

Modular Structure of TASK

Wave Dispersion Analysis: TASK/DP

- Various Models of Dielectric Tensor $\overleftarrow{\epsilon}(\omega, k; r)$:
 - Resistive MHD model
 - Collisional cold plasma model
 - Collisional warm plasma model
 - Kinetic plasma model (Maxwellian, non-relativistic)
 - \circ Kinetic plasma model (Arbitrary f(v), relativistic)
 - Gyro-kinetic plasma model (Maxwellian)
- Numerical Integration in momentum space: Arbitrary f(v)
 - Relativistic Maxwellian
 - Output of TASK/FP: Fokker-Planck code

Full wave analysis: TASK/WM

- magnetic surface coordinate: (ψ, θ, φ)
- Boundary-value problem of Maxwell's equation

$$\nabla \times \nabla \times E = \frac{\omega^2}{c^2} \overleftrightarrow{\epsilon} \cdot E + i \omega \mu_0 j_{\text{ext}}$$

- Kinetic dielectric tensor: $\overleftrightarrow{\epsilon}$
 - \circ Wave-particle resonance: $Z[(\omega n\omega_c)/k_{\parallel}v_{th}]$
 - Finite gyroradius effect: Reductive ⇒ Integral (ongoing)
- Poloidal and toroidal mode expansion
- FDM: ⇒ FEM (onging)
- Eigenmode analysis: Complex eigen frequency which maximize wave amplitude for fixed excitation proportional to electron density

Fokker-Planck Analysis: TASK/FP

Fokker-Planck equation

for velocity distribution function $f(p_{||}, p_{\perp}, \psi, t)$

$$\frac{\partial f}{\partial t} = E(f) + C(f) + Q(f) + L(f)$$

- \circ E(f): Acceleration term due to DC electric field
- \circ C(f): Coulomb collision term
- $\circ Q(f)$: Quasi-linear term due to wave-particle resonance
- \circ *L*(*f*): Spatial diffusion term
- Bounce-averaged: Trapped particle effect, zero banana width
- Relativistic: momentum p, weakly relativistic collision term
- Nonlinear collision: momentum or energy conservation
- Three-dimensional: spatial diffusion (neoclassical, turbulent)

Self-Consistent Wave Analysis with Modified f(v)

- Modification of velocity distribution from Maxwellian
 - Energetic ions generated by ICRF waves
 - Alpha particles generated by fusion reaction
 - Fast ions generated by NB injection
- Self-consistent wave analysis including modification of f(v)

Preliminary Results

Tail formation by ICRF minority heating

Quasi-linear Diffusion Momentum Distribution

Tail Formation

Power deposition

Finite Gyroradius Effects in Full Waves Analyses

- Several approaches to describe the finite gyroradius effects.
- Differential operators: $k_{\perp}\rho \rightarrow i\rho\partial/\partial r_{\perp}$
 - \circ This approach cannot be applied to the case $k_{\perp}\rho \gtrsim 1$.
 - Extension to the third and higher harmonics is difficult.
- Spectral method: Fourier transform in inhomogeneous direction
 - \circ This approach can be applied to the case $k_{\perp}\rho > 1$.
 - All the wave field spectra are coupled with each other.
 - Solving a dense matrix equation requires large computer resources.
- Integral operators: $\int \epsilon(x x') \cdot E(x') dx'$
 - \circ This approach can be applied to the case $k_{\perp}\rho > 1$
 - Correlations are localized within several gyroradii
 - Necessary to solve a large band matrix

Full Wave Analysis Using an Integral Form of Dielectric Tensor

• Maxwell's equation:

$$\nabla \times \nabla \times \boldsymbol{E}(\boldsymbol{r}) + \frac{\omega^2}{c^2} \int \stackrel{\longleftrightarrow}{\epsilon} (\boldsymbol{r}, \boldsymbol{r}') \cdot \boldsymbol{E}(\boldsymbol{r}') d\boldsymbol{r} = \mu_0 \boldsymbol{J}_{ext}(\boldsymbol{r})$$

- Integral form of dielectric tensor: $\stackrel{\longleftrightarrow}{\epsilon}(r,r')$
 - Integration along the unperturbed cyclotron orbit
- 1D analysis in tokamaks
 - To confirm the applicability
 - \circ Similar formulation in the lowest order of ho/L
 - Sauter O, Vaclavik J, Nucl. Fusion 32 (1992) 1455.

One-Dimensional Analysis (1)

ICRF minoring heating without energetic particles ($n_{\rm H}/n_{\rm D}=0.1$)

Differential approach is applicable

One-Dimensional Analysis (2)

ICRF minoring heating with energetic particles $(n_{\rm H}/n_{\rm D}=0.1)$

Differential approach cannot be applied since $k_{\perp}\rho_i > 1$.

One-Dimensional Analysis (3)

ICRF minoring heating with α -particles ($n_{\rm D}:n_{\rm He}=0.96:0.02$)

Absorption by α may be over- or under-estimated by differential approach.

3D Formulation

Coordinates

- \circ Magnetic coordinate system: (ψ, χ, ζ)
- \circ Local Cartesian coordinate system: (s, p, b)
- Fourier expansion: poloidal and toroidal mode numbers, *m*, *n*

Perturbed current

$$\boldsymbol{J}(\boldsymbol{r},t) = -\frac{q}{m} \int d\boldsymbol{v} \, q\boldsymbol{v} \, \int_{-\infty}^{\infty} dt' \, \left[\boldsymbol{E}(\boldsymbol{r}',t') + \boldsymbol{v}' \times \boldsymbol{B}(\boldsymbol{r}',t') \right] \cdot \frac{\partial f_0(\boldsymbol{v}')}{\partial \boldsymbol{v}'}$$

Maxwell distribution function

 \circ Anisotropic Maxwell distribution with T_{\perp} and $T_{||}$:

$$f_0(s_0, \mathbf{v}) = n_0 \left(\frac{m}{2\pi T_\perp}\right)^{3/2} \left(\frac{T_\perp}{T_\parallel}\right)^{1/2} \exp\left[-\frac{v_\perp^2}{2v_{T_\perp}^2} - \frac{v_\parallel^2}{2v_{T_\parallel}^2}\right]$$

Variable Transformations

Transformation of Integral Variables

 \circ Transformation from the velocity space variables (v_{\perp}, θ_0) to the particle position s' and the guiding center position s_0 .

$$\circ$$
 Jacobian: $J = \frac{\partial(v_{\perp}, \theta_0)}{\partial(s', s_0)} = -\frac{\omega_c^2}{v_{\perp} \sin \omega_c \tau}$.

 \circ Express v_{\perp} and θ_0 by s' and s_0 using $\tau = t - t'$, e.g.,

$$v_{\perp} \sin(\omega_{c}\tau + \theta_{0}) = \frac{\omega_{c} s - s'}{v_{\perp}} \frac{1}{2 \tan \frac{1}{2}\omega_{c}\tau} + \frac{\omega_{c}}{v_{\perp}} \left(\frac{s + s'}{2} - s_{0}\right) \tan \frac{1}{2}\omega_{c}\tau$$

- Integration over τ : Fourier expansion with cyclotron motion
- Integration over $v_{||}$: Plasma dispersion function

Final Form of Induced Current

• Induced current:

$$\cdot \begin{pmatrix} J_s^{mn}(s) \\ J_p^{mn}(s) \\ J_b^{mn}(s) \end{pmatrix} = \int ds' \sum_{m'n'} \overleftrightarrow{\sigma}^{m'n'mn}(s,s') \cdot \begin{pmatrix} E_s^{m'n'}(s') \\ E_p^{m'n'}(s') \\ E_b^{m'n'}(s') \end{pmatrix}$$

Electrical conductivity:

$$\overleftrightarrow{\sigma}^{m'n'mn}(s,s') = -in_0 \frac{q^2}{m} \sum_{\ell} \int \mathrm{d}s_0 \int_0^{2\pi} \mathrm{d}\chi_0 \int_0^{2\pi} \mathrm{d}\zeta_0 \exp i \left\{ (m'-m)\chi_0 + (n'-n)\zeta_0 \right\} \stackrel{\longleftrightarrow}{H}_{\ell}(s,s',s_0,\chi_0,\zeta_0)$$

- Matrix coefficients: $\overrightarrow{H}_{\ell}(s, s', s_0, \chi_0, \zeta_0)$
 - \circ Four kinds of **Kernel functions** including s, s', s_0 and harmonics number ℓ
 - The kernel functions are localized within several thermal gyroradii.
 - Plasma dispersion function

Kernel Functions

Kernel Function and its integrals

$$F_n^{(i)}(X,Y) \equiv \frac{1}{2\pi^2} \int_0^{\pi} d\theta \exp\left[-\frac{X^2}{1+\cos\theta} - \frac{Y^2}{1-\cos\theta}\right] f_n^{(i)}(\theta)$$

$$\mathcal{F}_n^{(ijk)}(X,Y) \equiv \int_0^Y dY' \int_0^{X+Y'} dX' X'^j Y'^k F_n^{(i)}(X',Y')$$

$$f_n^{(i)}(\theta) = \begin{cases} \frac{\cos n\theta}{\sin \theta} & (i=1) \\ \sin n\theta & (i=2) \\ \frac{\sin n\theta}{\sin^2\theta} & (i=3) \\ \frac{\cos \theta \sin n\theta}{\sin^2\theta} & (i=4) \end{cases}$$

Status of extension to 3D configuration

- In a homogeneous plasma, usual formula including th Bessel functions can be recovered.
- Kernel functions are the same as the 1D case,
- FEM formulation is required for convolution integral.
- Development of the FEM version of TASK/WM is ongoing (almost complete).
- Integral operator code in 3D configuration is waiting for the FEM version of TASK/WM.

Consistent Formulation of Integral Full Wave Analysis

- Full wave analysis for arbitrary velocity distribution function
 - Oielectric tensor:

$$\nabla \times \nabla \times \boldsymbol{E}(\boldsymbol{r}) - \frac{\omega^2}{c^2} \int d\boldsymbol{r}_0 \int d\boldsymbol{r}' \frac{\boldsymbol{p}'}{m\gamma} \frac{\partial f_0(\boldsymbol{p}', \boldsymbol{r}_0)}{\partial \boldsymbol{p}'} \cdot \boldsymbol{K}_1(\boldsymbol{r}, \boldsymbol{r}', \boldsymbol{r}_0) \cdot \boldsymbol{E}(\boldsymbol{r}') = i \omega \mu_0 \boldsymbol{j}_{\text{ext}}$$

where r_0 is the gyrocenter position.

- Fokker-Planck analysis including finite gyroradius effects
 - Quasi-linear operator

$$\frac{\partial f_0}{\partial t} + \left(\frac{\partial f_0}{\partial \boldsymbol{p}}\right)_{\boldsymbol{E}} + \frac{\partial}{\partial \boldsymbol{p}} \int d\boldsymbol{r} \int d\boldsymbol{r}' \boldsymbol{E}(\boldsymbol{r}) \, \boldsymbol{E}(\boldsymbol{r}') \cdot \boldsymbol{K}_2(\boldsymbol{r}, \boldsymbol{r}', \boldsymbol{r}_0) \cdot \frac{\partial f_0(\boldsymbol{p}', \boldsymbol{r}_0, t)}{\partial \boldsymbol{p}'} = \left(\frac{\partial f_0}{\partial \boldsymbol{p}}\right)_{\text{col}}$$

- The kernels K_1 and K_2 are closely related and localized in the region $|r r_0| \le \rho$ and $|r' r_0| \le \rho$.
- To be challenged

Summary

For comprehensive analyses of ICRF heating in burning plasmas, time-evolution of the velocity distribution functions and the finite gyroradius effects have to be consistently included. For this purpose, the extension of the integrated code TASK is ongoing.

• Self-consistent analysis including modification of f(p)

 Full wave analysis with arbitrary velocity distribution function and Fokker-Planck analysis using full wave field are available. Preliminary result of self-consistent analysis was obtained.

3D full wave analysis including the finite gyroradius effects:

• 1D analysis elucidated the importance of the gyroradius effects of energetic ions. Formulation was extended to a 2D configuration. Implementation is waiting for the FEM version of TASK/WM.