12th ITPA CDBM TG Meeting CRPP EPFL, Lausanne 2007/05/08

Integrated Modeling Activities in Japan

A. Fukuyama^A and <u>T. Takizuka^B</u>

^ADepartment of Nuclear Engineering, Kyoto University ^BNaka Fusion Institute, Japan Atomic Energy Agency

in collaboration with

BPSI Working Group

Outline

- 1. **BPSI** Burning Plasma Simulation Initiative
- 2. **TASK** Core Code for Integrated Modeling (Kyoto U)
- 3. TASK/3D Extended version of TASK for 3D (NIFS et al.)
- 4. **TOPICS** Integrated Modeling Code (JAEA)
- 5. Summary

BPSI: Burning Plasma Simulation Initiative

Research Collaboration of Universities, NIFS and JAEA

Targets of BPSI

- Framework for collaboration of various plasma simulation codes
 - Common interface for data transfer and execution control
 - Standard data set for data transfer and data storage
 - Reference core code: TASK
 - Helical configuration: included
- Physics integration with different time and space scales
 - Transport during and after a transient MHD events
 - Transport in the presence of magnetic islands
 - Core-SOL interface and ...
- Advanced technique of computer science
 - Parallel computing: PC cluster, Scalar-Parallel, Vector-Parallel
 - **Distributed computing**: GRID computing, Globus, ITBL

Plan of BPSI

• 1st Stage: current status

- Development of standard dataset and module interface
- Integrated simulation of multi-scale physics
- Validation of modules with experimental results
- Transport simulation in 3D helical configuration

2nd Stage

- Integration of existing and newly-developed modules
- Global integrated simulation (Core+Edge, Transport+RF+MHD,...)
- Validation of modules with direct numerical simulation
- Integrated simulation in **3D helical configuration**

3rd Stage

- Integrated simulation including startup and termination
- Full integrated simulation of burning plasmas

Activities of BPSI

Code Development

- **BPSI Framework**: standard dataset and interface
 - TASK code: (Kyoto U)
 - TASK/3D for helical plasmas: (NIFS, Kyoto U)
 - Predictive TOPICS for burning plasmas: (JAEA)
- Development of integrated modeling:
 - Transport-Turbulence-MHD (Kyushu U)
 - Core-SOL-Divertor (JAEA, CRIEPI, Tokyo U, Kyushu U)

Support of Meetings

- Domestic workshops (supported by RIAM, NIFS, JAEA)
- Workshop with experimentalists (supported by NF Forum)
- US-Japan workshop with participation from EU
- Korea-Japan workshop

Integrated Code Development Based on BPSI Framework

Integrated code: TASK, TOPICS and TASK/3D

International Integrated Modeling Activities

TASK Code

• Transport Analysing System for TokamaK

Features

- Core of Integrated Modeling Code in BPSI
 - Modular structure
 - Reference data interface and standard data set
- Various Heating and Current Drive Scheme
 - EC, LH, IC, AW, NB
- High Portability
 - Most of library routines included (except LAPACK, MPI, MDS)
 - Original graphic libraries (X11, Postscript, OpenGL)
- Development using CVS
- Open Source: http://bpsi.nucleng.kyoto-u.ac.jp/task/)
- Parallel Processing using MPI Library

Modules of TASK

EQ	2D Equilibrium	Fixed/Free boundary, Toroidal rotation
TR	1D Transport	Diffusive transport, Transport models
WR	3D Geometr. Optics	EC, LH: Ray tracing, Beam tracing
WM	3D Full Wave	IC, AW: Antenna excitation, Eigenmode
FP	3D Fokker-Planck	Relativistic, Bounce-averaged
DP	Wave Dispersion	Local dielectric tensor, Arbitrary $f(v)$
PL	Data Interface	Data conversion, Profile database
LIB	Libraries	LIB, MTX, MPI

Under Development

TX Transport analysis including plasma rotation and E_r **EG** Gyrokinetic linear stability analysis

Imported from TOPICS

EQUFree boundary equilibriumNBINBI heating

Modular Structure of TASK

Self-Consistent Wave Analysis with Modified f(v)

Modification of velocity distribution from Maxwellian

- Absorption of ICRF waves in the presence of energetic ions
- Current drive efficiency of LHCD
- NTM controllability of ECCD (absorption width)
- Self-consistent wave analysis including modification of f(v)

Code Development in TASK

- \circ Ray tracing analysis with arbitrary f(v): Already done
- \circ Full wave analysis with arbitrary f(v): **Completed**
- Fokker-Plank analysis of ray tracing results: Already done
- Fokker-Plank analysis of full wave results: Almost competed
- Self-consistent iterative analysis: Preliminary

Tail formation by ICRF minority heating

Integrated Analysis of AE in ITER Plasma

- Combined Analysis
 - Equilibrium: TASK/EQ
 - Transport: TASK/TR
 - Turbulent transport model: CDBM
 - Neoclassical transport model: NCLASS (Houlberg)
 - Heating and current profile: given profile
 - Full wave analysis: TASK/WM

Stability analysis

- \circ Standard H-mode operation: $I_p = 15$ MA, $Q \sim 10$
- \circ Hybrid operation: $I_p = 12 \text{ MA}$, flat q profile above 1
- \circ Steady-state operation: $I_p = 9 \text{ MA}$, reversed shear

Steady-State Operation

JNB

јтот

Jон

0.6

0.6

0.8

0.8

0.4

0.4

- $I_p = 6 \rightarrow 9 \text{ MA}$
- $P_{\rm NB} = 33 \, {\rm MW}$
- $P_{\rm LH} = 20 \, {\rm MW}$
- *Q* = 10.4
- $\beta_{\rm N} = 1.8$

AE in Steady-State Operation

Future Plan of the TASK code

Access to the TASK code

Required Environment

- \circ **Unix-like OS** (Linux, Mac OSX, \cdots)
- X-window system
- Fortran95 compiler (g95, ifort, pgf95, xlf95, sxf90, ···)

Source code

- Stable version (original part only):
 - Downloadable from our web site (http://bpsi.nucleng.kyoto-u.ac.jp/task/)
- Latest version: CVS tree (Read only) [password required]
- **Developer**: CVS tree (R/W) [account required]

User support

- Uniform user interface
- English guidebook in preparation

Extended version: TASK/3D

Motivation

- Integrated modeling of 3D plasma in helical devices
 - LHD, Heliotron-J et al.
- Modeling of tokamak plasmas including 3D effects
 - Effects of toroidal field ripple: Toroidal rotation, RWM
 - Effects of magnetic islands: NTM, Transport
- Extension
 - Interface for 3D configuration
 - \circ Transport model including E_r
 - Modeling of magnetic island

Modules of TASK/3D

• 3D Equilibrium:

- \circ Interface to equilibrium data from VMEC or HINT
- Interface to neoclassical transport coefficient code BSC
- Modules 3D-ready:
 - WR: Ray and beam tracing
 - WM: Full wave analysis
- New module: (by Y. Nakamura)
 - EI: Time evolution of current profile in helical geometry
- Modules to be updated:
 - \circ **TR**: Diffusive transport (with an appropriate model of E_r)
 - **TX**: Dynamic transport (with neoclassical toroidal viscosity)

Integrated modelling in JAEA Development of integrated models

Integrated modelling in JAEA

Core plasma	Core MHD stability: ST, NTM Heat and particle trans.: ITB, Current driveTOPICS-IB: TOPICS 		ated code
Edge/pedestal	Pedestal transport:ETB Edge MHD stability: ELM SOL transport, recycling	modelling for Burning plasma	asma inteor
SOL/Divertor	SOL/Divertor plasma transport Neutral particles Impurity particles Interaction with wall, A & M	SONIC: SOLDOR/ NEUT2D/ IMPMC	Burning pl

TOPICS-IB: TOPICS extended to Integrated simulation for Burning plasma

Integrated modelling in JAEA

NTM simulation by Integrated model

Integrated modelling in JAEA

- **Neoclassical tearing mode (NTM)** are important to access and to sustain high β and it relates to the transport and MHD.
- For the stabilization of NTM, profile control and ECCD injection were demonstrated in JT-60U.

 To do the selfconsistent analysis of stabilizing effect, 1.5D transport code, Modified Rutherford equation and ECCD code are integrated.

NTM simulation with modified Rutherford equation was verified by experimental results.

 Good agreement with the same coefficient set

Integrated modelling in JAEA

The consistent analysis shows: ECCD width has stronger effect than amount of EC-driven current. Precise ECCD control has enabled complete stabilization with smaller value of j_{EC}/j_{BS} : $J_{EC}/J_{BS} \sim 0.5$

[A. Isayama, IAEA FEC 2006]

Integrated edge-pedestal model

Eigenvalue problem of 2D Newcomb equation Applicable to wide range of mode numbers from low to high

(Five-point model)

Flux-tube geometry Integral fluid equations Exponential radial profiles with characteristic scale length

ELM energy loss simulation

H-mode transitio

- Energy loss by ELMs is crucial for reducing the divertor plate lifetime and limiting the plasma confinement.
- ELM energy loss was found to decrease with increasing the collisionality in multi-machine experiments.
- The collisionality dependence is investigated.
- ELM phenomena is simulated in JT-60 parameters.

Pedestal formation : Neoclassical transport in peripheral region and anomalous in inside region.

P [kPa]

Ô.

Stabilities of n=1-30 modes are examined in each time step.

Bootstrap Current and SOL Transport through Collisionality Affects the ELM Energy Loss

Integrated modelling in JAEA

Higher v^{*ped} $\mathsf{J}_{\mathsf{BS}}^{\mathsf{ped}}$ Lower **S**ped Larger Smaller unstable region Smaller ΔW_{FIM} Lower $\kappa_{\prime\prime}^{SOL}$ Higher **T**^{SOL} after ELM crash Smaller $\nabla T_{e^{dge}}$ Smaller perpendicular loss Smaller ΔW_{FIM}

Integrated SOL-divertor code:SONIC

Integrated modelling in JT-60U

Summary

- Integrated modeling activity in Japan is coordinated with Burning Plasma Simulation Initiative.
- Standard dataset and module interface for integrated modeling have been proposed and partially implemented in TASK.
- The **TASK** code has been developed as a reference core code for BPSI and applied to the prediction of ITER plasmas.
- The development of the extended version **TASK/3D** has started aiming at not only helical plasmas but also 3D effects in tokamaks.
- Predictive **TOPICS** has been successfully combined with various codes (MHD, SOL, EC) for integrated modeling.
- Benchmark test and module exchange between **TASK** and **TOPICS** are in progress.