12th ITPA CDBM TG Meeting CRPP EPFL, Lausanne 2007/05/08

TASK experience with stiff and non-stiff transport models

A. Fukuyama^A and M. Honda^B

^ADepartment of Nuclear Engineering, Kyoto University ^BNaka Fusion Institute, Japan Atomic Energy Agency

Transport Solvers in TASK

• **TASK/TR**: Diffusive transport equation

- **FDM**: Finite difference method
- Full implicit method:
 - Nonlinear equation solver: Simple Picard method
- \circ Typical time step for GLF23 model: $10^{-5}\,\mathrm{s}$

 \circ Typical time step for CDBM model: 10^{-2} s

- **TASK/TX**: Dynamic transport equation
 - Solving equations of motion (no derivative of D)
 - **FEM**: Finite element method (Linear and Hermite)
 - Full implicit method: Nonlinear equation: Simple Picard method
 - \circ Typical time step for constant difuusivity model: 10^{-3} s

TFTR #88742 (L-mode)

JET #38407 (H-mode with Giant ELMs)

Summary

- The stiff models require very small time step, typically less than 10^{-5} s, while the CDBM models permit much longer time step, 10^{-2} s.
- The **benchmark test of tranport codes** should be carried out with a non-stiff transport model.
- Another approach: The time step 10^{-5} s is the order of the inverse of the drift frequency. The assumption of stationarity

$$\frac{\mathrm{d}I}{\mathrm{d}t} = \gamma_L(\nabla p) I - k^2 D(I) I = 0, \qquad D(I) = \frac{\gamma_L(\nabla p)}{k^2}$$

is not applicable. The time evolution of the turbulence amplitude

$$\frac{\mathrm{d}I}{\mathrm{d}t} = \gamma_L(\nabla p) I - k^2 D(I) I$$

should be solved simultaneously with the transport equation.

CDBM Transport Model: CDBM05

Model Equations

• Fluid equations for electrons and ions (*s* = e, i):

$$\frac{\partial n_s}{\partial t} = -\frac{1}{r}\frac{\partial}{\partial r}\left(rn_s u_{sr}\right) + S_s$$

$$\frac{\partial}{\partial t}(m_s n_s u_{sr}) = -\frac{1}{r}\frac{\partial}{\partial r}(rm_s n_s u_{sr}^2) + \frac{1}{r}m_s n_s u_{s\theta}^2 - \frac{\partial}{\partial r}n_s T_s + e_s n_s (E_r + u_{s\theta}B_{\phi} - u_{s\phi}B_{\theta})$$

$$\frac{\partial}{\partial t}(m_s n_s u_{s\theta}) = -\frac{1}{r^2} \frac{\partial}{\partial r} (r^2 m_s n_s u_{sr} u_{s\theta}) + \frac{1}{r^2} \frac{\partial}{\partial r} - r^3 n_s m_s \mu_s \frac{\partial}{\partial r} \frac{u_{s\theta}}{r} + e_s n_s (E_\theta - u_{sr} B_\phi)$$

$$+ F_{s\theta}^{\rm NC} + F_{s\theta}^{\rm C} + F_{s\theta}^{\rm W} + F_{s\theta}^{\rm L} + F_{s\theta}^{\rm IN} + F_{s\theta}^{\rm CX}$$

$$\frac{\partial}{\partial t} \left(m_s n_s u_{s\phi} \right) = -\frac{1}{r} \frac{\partial}{\partial r} (rm_s n_s u_{sr} u_{s\phi}) + \frac{1}{r} \frac{\partial}{\partial r} - rn_s m_s \mu_s \frac{\partial}{\partial r} u_{s\phi} + e_s n_s (E_{\phi} + u_{sr} B_{\theta})$$

$$+ F_{s\phi}^{\rm C} + F_{s\phi}^{\rm W} + F_{s\phi}^{\rm L} + F_{s\phi}^{\rm IN} + F_{s\phi}^{\rm CX}$$

$$\frac{\partial}{\partial t}\frac{3}{2}n_sT_s = -\frac{1}{r}\frac{\partial}{\partial r}r \quad \frac{5}{2}u_{sr}n_sT_s - \frac{3}{2}n_s\chi_s\frac{\partial}{\partial r}T_e \quad +e_sn_s(E_\theta u_{s\theta} + E_\phi u_{s\phi})$$

$$+ P_s^{\rm C} + P_s^{\rm L} + P_s^{\rm R} + P_s^{\rm RF}$$

- Neoclassical Transport Models: NCLASS⁶
- Turbulent Transport Models: CDBM, GLF23 v1.61 (retuned)⁶, Weiland
 - ° CDBM: No $E \times B$ shearing (ω_{E1}) and magnetic curvature (κ_*) effects
 - \circ GLF23: Using toroidal rotation velocity (V_{tor}) from exp. data
 - ° Weiland: Assuming $k_{\theta}\rho_s = 0.316$
- Solve thermal transport equations
 - Fixed density profiles
 - ° Taken from experimental analysis data in ITPA profile database
 - 1D: *R*, *a*, *I*_{*p*}, *B*_{*t*}, *κ*, $φ_a$
 - 2D: $T_{e,i}$, $n_{e,bulk,imp}$, Z_{eff} , j, $Q_{heating}$, $S_{NB,wall}$, V_{rot} , Metrics
 - $-T_{e,i}$ data used only for initial profiles and boundary conditions
 - -q data used only if j is not available.
 - $^\circ$ Boundary conditions enforced at $\rho \leq 0.9$
 - \circ Particle flux calculated from $S_{\rm NB, wall}$ in thermal equations
 - Diagonal turbulent transport coefficient set to zero if negative

⁶By courtesy of NTCC site (http://w3.pppl.gov/ntcc/)

Conditions for Comparison

- Comparison of resulting $T_{e,i}$ profiles with experimental data in each discharge
 - $^{\circ}$ At a fully relaxed time (typically 0.5 s)
 - ° Compared with fitted temperature profiles, not measured ones
- 55 discharges described in "ITER Physics Basis: Chapter 2⁷"
 - ° 38 L-mode discharges
 - $^{\circ}$ 14 H-mode discharges with small ELMs
 - $^{\rm o}$ 3 H-mode discharges with giant ELMs
- Figures of merit
 - $^{\rm o}$ Relative RMS error, $\sigma_{\rm T}^{\rm rel}$, relative to the maximum experimental temperature for each temperature profile within the region of $0.2 \le \rho \le 0.9$

$$\sigma_{\rm T}^{\rm rel} = \sqrt{\frac{1}{N} \sum_{j=1}^{N} \epsilon_j^2}, \quad \epsilon_j = \frac{T_j^{\rm sim} - T_j^{\rm exp}}{T_{\rm max}^{\rm exp}}$$

 T_j : *j*th point of experimental data and simulation result for each temperature N: the number of experimental data points in a profile

$^{\rm o}$ Six figures of merit defined in ITER Physics Basis as described later

Relative RMS Error for Temperature Profiles (CDBM)

Relative RMS Error for Temperature Profiles (GLF23)

Relative RMS Error for Temperature Profiles (Weiland)

