12th ITPA CDBM TG Meeting CRPP EPFL, Lausanne 2007/05/09

Collaboration in Verification and Validation Activities

A. Fukuyama

Department of Nuclear Engineering, Kyoto University

Introduction Past and current activities in ITPA Activities in Japan Subjects of discussion

• What is to be verified?

• Numerical model of each component:

- Numerical stability, convergence, accuracy, performance
- Comparison with analytical models in some limits
- Comparison with similar codes: Benchmark test

• Framework of integration

- Consistency, sufficiency, expandability, universality
- Inter-operability

• What is to be validated?

• Experimental data

- Necessary data items, number of data, quality of data

• Physics model

- Conformity with experimental data
- Conformity with similar codes in realistic situations

Introduction

• What is to be verified?

- Numerical model of each component:
 - Numerical stability, convergence, accuracy, performance
 - Comparison with analytical models in some limits
 - Comparison with similar codes: Benchmark test

• Framework of integration

- Consistency, sufficiency, expandability, universality
- Inter-operability
- What is to be validated?
 - Experimental data
 - Necessary data items, number of data, quality of data
 - Physics model
 - Conformity with experimental data
 - Conformity with similar codes in realistic situations

Past and Current V&V Activities in ITPA

• ITER Physics Basis: ITER Physics R&D

• Transport modeling

- ITER Profile Database
- Comparison of transport models
- Benchmark test of transport codes (Fixed transport coefficients)
- Activities in ITPA-CDBM TG
 - Transport modeling: IAEA FEC proceedings
 - **Activities in ITPA-SSO TG**
 - Code benchmark test
 - · ECCD modeling: (ray tracing, Fokker-Plank):
 - · LHCD modeling: (ray tracing, Fokker-Plank)
 - · ICH modeling: (full wave)
 - Scenario benchmark test
 - \cdot Transport + NBI + IC + EC

ECCD Benchmark Test (ITPA07f-SSO: R. Prater)

ECH Codes Used in this Benchmarking Study

Cult	Propagation	Propagation Dispersion	D		ECOD Medal
Code	Model	Relation	Resonance	Absorption	ECCD Model
BANDIT-3D	Rays	Cold	Relativistic	Fokker-Planck	Fokker-Planck
CQL3D	Rays	Cold	Relativistic	Fokker-Planck	Fokker-Planck
GENRAY	Rays	Relativistic	Relativistic	Mazzucato	Cohen
		Relativistic (R2D2)	Relativistic	R2D2	Cohen
		Relativistic (Westerhof- Tokman)	Relativistic	Relativistic	Cohen
GRAY	Quasi-optical	Cold	Relativistic	Analytic	Farina
			Weakly relativistic	Analytic	Farina
OGRAY	Gaussian	Cold	Relativistic	Fokker-Planck	Fokker-Planck
TORAY-FOM	Rays	Cold	Weakly relativistic	Westerhof	Cohen
		Cold	Relativistic	Westerhof	Cohen
TORAY-GA	Rays	Cold	Relativistic	Mazzucato	Cohen
				Mazzucato	Lin-Liu
				Mazzucato	Lin-Liu pol
TORBEAM	Gaussian	Cold	Weakly relativistic	Westerhof	Cohen

TABLE I

323-06/RP/jy

ECCD Benchmark Test (ITPA07f-SSO: R. Prater)

Profiles Differ More Than Integrated Values

 No consistent way was found to evaluate EC beam dispersion for ray tracing and beam propagation

ITER Hybrid Benchmark Simulations

(more work is needed to strictly enforce these prescriptions for the simulations)

Plasma in flattop phase (as stationary as possible)

Ip = 12 MA $B_{T} = 5.3 T$ $t_{P}*/t_{E} = 5.0$ $f_{D}/(f_{D}+f_{T}) = 0.5$ $f_{Be} = 2\%$ $f_{Ar} = 0.12\%$

 $\begin{array}{l} {\sf P}_{\sf NBI} = 33 \; {\sf MW} \; (1 \; {\sf MeV}, \; {\sf off-axis}, \; {\sf Z}_{\sf NBcenter} \\ = -0.42 \; m @ \; {\sf R} = 5.3 \; m) \\ {\sf P}_{\sf ICRF} = 20 \; {\sf MW} \; (53 \; {\sf MHz}, \; {\sf heating \; only}, \\ {\sf 2T}) \\ {\sf P}_{\sf EC} = 20 \; {\sf MW} \; (170 \; {\sf GHz}, \; {\sf midplane} \\ {\sf launch}, \; \alpha_{1,2,3} = 0^{\circ}, \; \beta_{1,2,3} = 30^{\circ}, \; {\sf P}_{1,2,3} = \\ {\sf 6.67 \; MW}) \end{array}$

 R_b, Z_b for fixed boundary (also PF coil currents, I_i , β_P for freeboundary) ρ_{ped} = 0.925

$$n_{ped} = n(\rho = 0.925) = n(0)$$

 $T_{ped} = 5.0 \text{ keV}$

 $\begin{array}{l} n(0) = 0.85 \ x \ 10^{20} \ /m3 \\ n(\rho = 0.0 \ - \ 0.925) = n(0) \\ \text{Linear drop from } \rho = 0.925 \ - \ 1.0 \\ n(\rho = 1.0) = 0.35 \ x \ n(0) \\ T(\rho = 1.0) = 200 \ \text{eV} \end{array}$

 $n_z(\rho)/n_z(0)$ same as electrons

Te(ρ) and Ti(ρ) profiles from GLF23

T_z(r) same as fuel ions

Hybrid #1) NB + IC

Hybrid #2) NB + IC + EC

Benchmark Test for ITER Hybrid Scenario

- C.E. Kessel et al.: IAEA2006 IT/P1-7 (ITPA/SSO)
- Codes: CRONOS, ONETWO, TSC/TRANSP, TOPICS, ASTRA

Figure 1. Electron temperature profiles and density profile (a), ion temperature profiles (b), safety factor profiles (c), for the NB+IC ITER Hybrid simulations.

Figure 2. External power deposition profiles to electrons (a) and ions (b) and the toroidal current density (c) for the NB+IC ITER Hybrid simulations.

Benchmark Test for ITER Steady-State Scenario

• Codes: TOPICS, CRONOS, TSC/TRANSP

Figure 5. Electron and ion temperature, density, and external power deposition profiles for Steady State ITER simulations, (a) TOPICS (NB+EC), (b) CRONOS (NB+IC+LH), and (c) TSC/TRANSP (NB+IC+LH).

Figure 6. Safety factor and toroidal current density profiles and its contributions for Steady State ITER simulations, (a) TOPICS (NB+EC), (b) CRONOS (NB+IC+LH), and (c) TSC/TRANSP (NB+IC+LH).

Bentimark Test of TASK/TR and TOPICS

Discussion on Collaborative Activities

Benchmark Test

• Transport code

- Simple non-stiff transport model (e.g. CDBM05)
- Same transport solver
- Own transport solver

Joint Metrics

0

0

Standardized Test Case

• Experimental results or ITER prediction?

0