5th IAEA Technical Meeting on Steady State Operation of Magnetic Fusion Devices Riviera hotel, Daejeon, Korea 2007/05/16

Integrated Modeling of Steady State Scenarios for ITER Using the TASK Code

A. Fukuyama Department of Nuclear Engineering, Kyoto University, Kyoto 606-8501, Japan

Outline

- 1. Integrated Modeling code: TASK
- 2. Self-Consistent Full Wave Analysis of ICRF Waves
- 3. Beam Tracing of ECRF Waves
- 4. CDBM Transport Model
- 5. Analysis of ITER Steady-State Scenario
- 6. Summary

TASK Code

• Transport Analysing System for TokamaK

• Features

- A Core of Integrated Modeling Code in BPSI
 - Modular structure, Unified Standard data interface
- Various Heating and Current Drive Scheme
 - Full wave analysis for IC and AW
 - Ray and beam tracing for EC and LH
 - 3D Fokker-Planck analysis
- High Portability
- Development using CVS
- Open Source
- Parallel Processing using MPI Library
- Extension to Toroidal Helical Plasmas

Modules of TASK

PL	Data Interface	Data conversion, Profile database
EQ	2D Equilibrium	Fixed/Free boundary, Toroidal rotation
TR	1D Transport	Diffusive transport, Transport models
WR	3D Geometr. Optics	EC, LH: Ray tracing, Beam tracing
WM	3D Full Wave	IC, AW: Antenna excitation, Eigenmode
FP	3D Fokker-Planck	Relativistic, Bounce-averaged
DP	Wave Dispersion	Local dielectric tensor, Arbitrary $f(v)$
LIB	Libraries	LIB, MTX, MPI

Under Development

ТХ	Transport analysis including plasma rotation and E_r
EG	Gyrokinetic linear stability analysis

Imported from TOPICS

EQUFree boundary equilibriumNBINBI heating

Modular Structure of TASK

Self-Consistent Wave Analysis with Modified f(v)

Modification of velocity distribution from Maxwellian

- Energetic ions generated by ICRF waves
- Alpha particles generated by fusion reaction
- Fast ions generated by NB injection

• Self-consistent wave analysis including modification of f(v)

Preliminary Results

Tail formation by ICRF minority heating

Quasi-linear Diffusion Momentum Distribution

Beam Tracing Analysis of ECCD

Coupled with 3D Fokker-Planck code TASK/FP

CDBM Transport Model: CDBM05

- Neoclassical Transport Models: NCLASS⁶
- Turbulent Transport Models: CDBM, GLF23 v1.61 (retuned)⁶, Weiland
 - ° CDBM: No $E \times B$ shearing (ω_{E1}) and magnetic curvature (κ_*) effects
 - \circ GLF23: Using toroidal rotation velocity (V_{tor}) from exp. data
 - ° Weiland: Assuming $k_{\theta}\rho_s = 0.316$
- Solve thermal transport equations
 - Fixed density profiles
 - ° Taken from experimental analysis data in ITPA profile database
 - 1D: *R*, *a*, *I*_{*p*}, *B*_{*t*}, *κ*, $φ_a$
 - 2D: $T_{e,i}$, $n_{e,bulk,imp}$, Z_{eff} , j, $Q_{heating}$, $S_{NB,wall}$, V_{rot} , Metrics
 - $-T_{e,i}$ data used only for initial profiles and boundary conditions
 - -q data used only if j is not available.
 - $^\circ$ Boundary conditions enforced at $\rho \leq 0.9$
 - \circ Particle flux calculated from $S_{\rm NB, wall}$ in thermal equations
 - Diagonal turbulent transport coefficient set to zero if negative

⁶By courtesy of NTCC site (http://w3.pppl.gov/ntcc/)

Conditions for Comparison

- Comparison of resulting $T_{e,i}$ profiles with experimental data in each discharge
 - $^{\circ}$ At a fully relaxed time (typically 0.5 s)
 - ° Compared with fitted temperature profiles, not measured ones
- 55 discharges described in "ITER Physics Basis: Chapter 2⁷"
 - ° 38 L-mode discharges
 - $^{\circ}$ 14 H-mode discharges with small ELMs
 - $^{\rm o}$ 3 H-mode discharges with giant ELMs
- Figures of merit
 - $^{\rm o}$ Relative RMS error, $\sigma_{\rm T}^{\rm rel}$, relative to the maximum experimental temperature for each temperature profile within the region of $0.2 \le \rho \le 0.9$

$$\sigma_{\rm T}^{\rm rel} = \sqrt{\frac{1}{N} \sum_{j=1}^{N} \epsilon_j^2}, \quad \epsilon_j = \frac{T_j^{\rm sim} - T_j^{\rm exp}}{T_{\rm max}^{\rm exp}}$$

 T_j : *j*th point of experimental data and simulation result for each temperature N: the number of experimental data points in a profile

$^{\rm o}$ Six figures of merit defined in ITER Physics Basis as described later

Relative RMS Error for Temperature Profiles (CDBM05)

Relative RMS Error for Temperature Profiles (GLF23)

Standard Operation Scenario

- Large plasma current: $I_p = 15 \text{ MA}$, On-axis heating: $P_{\text{NB}} = 40 \text{ MW}$
- Positive shear profile, Small $f_{\rm BS}$

Hybrid Operation Scenario

- Moderate plasma current: $I_p = 12 \text{ MA}$, On-axis: $P_{\text{NB}} = 33 \text{ MW}$
- Flat q profile with small ITB inside $\rho=0.4$

Quasi-Steady State Operation Scenario

- Current ramp up: $I_p = 6 \rightarrow 8 \text{ MA}$, $P_{\text{NB}} = 17 \text{ MW}$, $P_{\text{LH}} = 25 \text{ MW}$
- Reversed shear profile, $I_{OH} \sim 0$

ITER Steady-State Operation (1)

• Off-axis NBI: 20 MW at r = 0.5 m

• Off-axis ECCD: 10 MW at r = 1.0 m

sustained.

ITER Steady-State Operation (2)

• Off-axis NBI: 20 MW at r = 0.5 m

• Off-axis ECCD: 10 MW at r = 0.8 m

not enough power.

ITER Steady-State Operation (3)

• Off-axis NBI: 30 MW at r = 0.5 m

cannot be sustained.

• Off-axis ECCD: 10 MW at r = 1.2 m

Dependence on Initial Current Profile

Summary

- We are developing the TASK code for integrated modeling of burning plasmas including ITER. Self-consistent analysis is necessary for especially burning plasmas.
- The **CDBM05 transport model** including the effect of elongation has shown better agreement with the L and H mode data in the ITPA profile database than the previous CDBM model and other models.
- Time-dependent 1-1/2D thermal transport simulations of ITER plasmas with the CDBM05 model predict desired performance of standard, hybrid, and steady state operations.
- The sustatinment of steady-state is **sensitive to the ECCD location**. Systematic survey of various parameters will improve the understanding of the physical mechanisms.

• Work in progress

More consistent simulation of ITER plasma

- Particle transport coupled with plasma rotation
- Wave heating and current drive including f(v) modification
- FLR effects in full wave analysis