EPS PPC 2007, Warsaw, Poland D1-005, 2007/07/02

Integrated Full-Wave Modeling of ICRF Heating in Tokamak Plasmas

A. Fukuyama, S. Murakami, T. Yamamoto, H. Nuga

Department of Nuclear Engineering, Kyoto University, Kyoto 606-8501, Japan

1. Introduction

- 2. Integrated tokamak modeling code: TASk
- 3. Modification of velocity distribution function
- 4. Integral formulation of full wave analysis
- 5. Summary

Introduction(1)

ICRF Waves in Burning Plasmas

- Both ICRF waves and fusion reaction generate energetic ions and are affected by the energetic ions.
- In the start up phase of ITER plasmas, the role of ICRF waves is important, time-evolving, and sensitive to the plasma conditions

Introduction(2)

Gyrokinetic Behavior of Energetic Ions

- Self-consistent analysis of non-Maxwellian velocity distribution function is necessary.
- Finite gyroradius and finite orbit size affect the behavior of ICRF waves.

Introduction(3)

Comprehensive Modeling of Burning Plasmas

- Energetic ions interact with bulk plasmas through, for example, transport processes and orbit loss.
- Alfvén eigenmodes may affect the energetic ions themselves.
- Integrated comprehensive modeling of burning plasmas is inevitable.

- Analysis of ICRF waves in burning plasma requires
 - Full wave analysis
 - Non-Maxwellian velocity distribution function
 - Finite gyroradius effect
 - Integrated modeling
- Integrated approach using the TASK code

TASK Code

• Transport Analysing System for TokamaK

• Features

- A Core of Integrated Modeling Code in BPSI
 - Modular structure, Unified Standard data interface
- Various Heating and Current Drive Scheme
- Full wave analysis for IC and AW
- Ray and beam tracing for EC and LH
- 3D Fokker-Planck analysis
- High Portability
- Development using CVS
- Open Source
- Parallel Processing using MPI Library
- Extension to Toroidal Helical Plasmas

Modules of TASK

PL	Data Interface	Data conversion, Profile database
EQ	2D Equilibrium	Fixed/Free boundary, Toroidal rotation
TR	1D Transport	Diffusive transport, Transport models
WR	3D Geometr. Optics	EC, LH: Ray tracing, Beam tracing
WM	3D Full Wave	IC, AW: Antenna excitation, Eigenmode
FP	3D Fokker-Planck	Relativistic, Bounce-averaged
DP	Wave Dispersion	Local dielectric tensor, Arbitrary $f(v)$
LIB	Libraries	LIB, MTX, MPI

Under Development

ΤΧ	Transport analysis including plasma rotation and E_r
EG	Gyrokinetic linear stability analysis

Imported from TOPICS

EQU Free boundary equilibriumNBI heating

Modular Structure of TASK

Inter-Module Collaboration Interface: TASK/PL

- Role of Module Interface
 - Data exchange between modules:
 - Standard dataset: Specify set of data (cf. ITPA profile DB)
 - Specification of data exchange interface: initialize, set, get
 - Execution control:
 - Specification of execution control interface: initialize, setup, exec, visualize, terminate
 - Uniform user interface: parameter input, graphic output
- Role of data exchange interface: TASK/PL
 - **Keep present status of plasma and device**
 - Store history of plasma
 - Save into file and load from file
 - Interface to experimental data base

Standard Dataset (interim)

Shot data

Machine ID, Shot ID, Model ID

Device data: (Level 1)

RR	R	m	Geometrical major radius
RA	a	m	Geometrical minor radius
RB	b	m	Wall radius
BB	В	Т	Vacuum toroidal mag. field
RKAP	К		Elongation at boundary
RDLT	δ		Triangularity at boundary
RIP	Ip	А	Typical plasma current
Equilibri	um dat	a: (Level 1)	
PSI2D	$\psi_{\rm p}(R,$	Z) Tm^2	2D poloidal magnetic flux

Toroidal magnetic flux

Poloidal magnetic flux

Toroidal current

Plasma pressure

Poloidal current: $2\pi B_{\phi}R$

Inverse of safety factor

PSI2D	$\psi_{\rm p}(R,Z)$	Tm^2
PSIT	$\psi_{t}(\rho)$	Tm^2
PSIP	$\psi_{\rm p}(ho)$	Tm^2
ITPSI	$I_{t}(\rho)$	Tm
IPPSI	$I_{\rm p}(ho)$	Tm
PPSI	$p(\rho)$	MPa
QINV	$1/q(\rho)$	

Metric data

1D:	$V'(\rho), \langle \nabla V \rangle(\rho), \cdot$	•••
-----	---	-----

2D: g_{ij}, \cdots

3D: g_{ii}, \cdots

Fluid plasma data

NSMAX	S	
PA	A_s	
PZ0	Z_{0s}	
PZ	Z_s	
PN	$n_s(\rho)$	m^3
PT	$T_s(\rho)$	eV
PU	$u_{s\phi}(\rho)$	m/s
QINV	$1/q(\rho)$	

Kinetic plasma data

FP	$f(p, \theta_p, \rho)$
	1 -

Dielectric tensor data

 $\overleftarrow{\epsilon}(\rho,\chi,\zeta)$ CEPS

Full wave field data

CE $E(\rho,\chi,\zeta)$ V/m CB

Atomic mass Charge number Charge state number Number density Temperature Toroidal rotation velocity Inverse of safety factor

Number of particle species

momentum dist. fn at $\theta = 0$

Local dielectric tensor

Complex wave electric field $B(\rho, \chi, \zeta)$ Wb/m² Complex wave magnetic field

Ray/Beam tracing field data

RRAY	$R(\ell)$	m	R of ray at length ℓ
ZRAY	$Z(\ell)$	m	Z of ray at length ℓ
PRAY	$\phi(\ell)$	rad	ϕ of ray at length ℓ
CERAY	$E(\ell)$	V/m	Wave electric field at length ℓ
PWRAY	$P(\ell)$	W	Wave power at length ℓ
DRAY	$d(\ell)$	m	Beam radius at length ℓ
VRAY	$v(\ell)$	1/m	Beam curvature at length ℓ

Example: Data Structure and Program Interface

• Data structure: Derived type (Fortran95)

```
type bpsd_plasmaf_data
  real(8) :: pn ! Number density [m^-3]
  real(8) :: pt ! Temperature [eV]
  real(8) :: ptpr ! Parallel temperature [eV]
  real(8) :: ptpp ! Perpendicular temperature [eV]
  real(8) :: pu ! Parallel flow velocity [m/s]
end type bpsd_plasmaf_data
type bpsd_plasmaf_type
  real(8) :: time
  real(8), dimension(:), allocatable :: s
                    ! (rho<sup>2</sup>) : normarized toroidal flux
  real(8), dimension(:), allocatable :: ginv
                    ! 1/q : inverse of safety factor
  type(bpsd_plasmaf_data), dimension(:,:), allocatable :: data
end type bpsd_plasmaf_type
```

• Program interface

Set data	<pre>bpsd_set_data(plasmaf,ierr)</pre>
Get data	<pre>bpsd_get_data(plasmaf,ierr)</pre>
Save data	<pre>bpsd_save_data(filename,plasmaf,ierr)</pre>
Load data	<pre>bpsd_load_data(filename,plasmaf,ierr)</pre>
Plot data	<pre>bpsd_plot_data(plasmaf,ierr)</pre>

Examples of sequence in a module

• TR_EXEC(dt)

```
call bpsd_get_data(plasmaf,ierr)
call bpsd_get_data(metric1D,ierr)
local data <- plasmaf,metric1D
advance time step dt
plasmaf <- local data
call bpsd_set_data(plasmaf,ierr)</pre>
```

• EQ_CALC

```
call bpsd_get_data(plasmaf,ierr)
local data <- plasmaf
calculate equilibrium
update plasmaf
call bpsd_set_data(plasmaf,ierr)
equ1D,metric1D <- local data
call bpsd_set_data(equ1D,ierr)
call bpsd_set_data(metric1D,ierr)</pre>
```

Wave Dispersion Analysis : TASK/DP

- Various Models of Dielectric Tensor $\overleftarrow{\epsilon}(\omega, k; r)$:
 - Resistive MHD model
 - Collisional cold plasma model
 - Collisional warm plasma model
 - Kinetic plasma model (Maxwellian, non-relativistic)
 - Kinetic plasma model (Arbitrary f(v), relativistic)
 - Gyro-kinetic plasma model (Maxwellian)
- Numerical Integration in momentum space: Arbitrary f(v)
 - Relativistic Maxwellian
 - Output of TASK/FP: Fokker-Planck code

Full wave analysis: TASK/WM

- magnetic surface coordinate: (ψ, θ, φ)
- Boundary-value problem of Maxwell's equation

$$\nabla \times \nabla \times E = \frac{\omega^2}{c^2} \overleftrightarrow{\epsilon} \cdot E + i \,\omega \mu_0 j_{\text{ext}}$$

• Kinetic **dielectric tensor**: $\overleftarrow{\epsilon}$

• Wave-particle resonance: $Z[(\omega - n\omega_c)/k_{\parallel}v_{th}]$ • Finite gyroradius effect: Reductive \implies Integral (ongoing)

- Poloidal and toroidal mode expansion
- FDM: ⇒ FEM (onging)
- Eigenmode analysis: **Complex eigen frequency** which maximize wave amplitude for fixed excitation proportional to electron density

Fokker-Planck equation

for velocity distribution function $f(p_{\parallel}, p_{\perp}, \psi, t)$

$$\frac{\partial f}{\partial t} = E(f) + C(f) + Q(f) + L(f)$$

- $\circ E(f)$: Acceleration term due to DC electric field
- $\circ C(f)$: Coulomb collision term
- $\circ Q(f)$: Quasi-linear term due to wave-particle resonance
- \circ *L*(*f*): Spatial diffusion term
- Bounce-averaged: Trapped particle effect, zero banana width
- Relativistic: momentum p, weakly relativistic collision term
- Nonlinear collision: momentum or energy conservation
- Three-dimensional: spatial diffusion (neoclassical, turbulent)

Self-Consistent Wave Analysis with Modified f(v)

Modification of velocity distribution from Maxwellian

- Energetic ions generated by ICRF waves
- Alpha particles generated by fusion reaction
- Fast ions generated by NB injection

• Self-consistent wave analysis including modification of f(v)

Preliminary Results

Tail formation by ICRF minority heating

Quasi-linear Diffusion Momentum Distribution

Finite Gyroradius Effects in Full Waves Analyses

- Several approaches to describe the finite gyroradius effects.
- Differential operators: $k_{\perp}\rho \rightarrow i\rho\partial/\partial r_{\perp}$

• This approach cannot be applied to the case $k_{\perp}\rho \gtrsim 1$. • Extension to the third and higher harmonics is difficult.

- **Spectral method**: Fourier transform in inhomogeneous direction
 - This approach can be applied to the case $k_{\perp}\rho > 1$.
 - All the wave field spectra are coupled with each other.
 - Solving a dense matrix equation requires large computer resources.
- Integral operators: $\int \epsilon(x x') \cdot E(x') dx'$
 - \circ This approach can be applied to the case $k_{\perp}\rho > 1$
 - Correlations are localized within several gyroradii
 - Necessary to solve a large band matrix

Full Wave Analysis Using an Integral Form of Dielectric Tensor

• Maxwell's equation:

$$\nabla \times \nabla \times \boldsymbol{E}(\boldsymbol{r}) + \frac{\omega^2}{c^2} \int \overleftarrow{\epsilon}(\boldsymbol{r}, \boldsymbol{r}') \cdot \boldsymbol{E}(\boldsymbol{r}') d\boldsymbol{r} = \mu_0 \boldsymbol{j}_{ext}(\boldsymbol{r})$$

• Integral form of dielectric tensor: $\overleftarrow{\epsilon}(r, r')$

 Integration along the unperturbed cyclotron orbit

- 1D analysis in tokamaks
 - To confirm the applicability
 - $^{\rm o}$ Similar formulation in the lowest order of ρ/L
 - Sauter O, Vaclavik J, Nucl. Fusion 32 (1992) 1455.

One-Dimensional Analysis (1)

ICRF minoring heating without energetic particles ($n_{\rm H}/n_{\rm D} = 0.1$)

Differential approach is applicable

One-Dimensional Analysis (2)

Differential approach cannot be applied since $k_{\perp}\rho_i > 1$.

One-Dimensional Analysis (3)

ICRF minoring heating with α -particles ($n_D : n_{He} = 0.96 : 0.02$)

Absorption by α may be over- or under-estimated by differential approach.

Coordinates

- Magnetic coordinate system: (ψ, χ, ζ)
- Local Cartesian coordinate system: (s, p, b)
- Fourier expansion: poloidal and toroidal mode numbers, m, n
- Perturbed current

$$\boldsymbol{j}(\boldsymbol{r},t) = -\frac{q}{m} \int \mathrm{d}\boldsymbol{v} \, q \boldsymbol{v} \, \int_{-\infty}^{\infty} \mathrm{d}t' \left[\boldsymbol{E}(\boldsymbol{r}',t') + \boldsymbol{v}' \times \boldsymbol{B}(\boldsymbol{r}',t') \right] \cdot \frac{\partial f_0(\boldsymbol{v}')}{\partial \boldsymbol{v}'}$$

Maxwell distribution function

 \circ Anisotropic Maxwell distribution with T_{\perp} and T_{\parallel} :

$$f_0(s_0, \boldsymbol{v}) = n_0 \left(\frac{m}{2\pi T_{\perp}}\right)^{3/2} \left(\frac{T_{\perp}}{T_{\parallel}}\right)^{1/2} \exp\left[-\frac{v_{\perp}^2}{2v_{T_{\perp}}^2} - \frac{v_{\parallel}^2}{2v_{T_{\parallel}}^2}\right]$$

Variable Transformations

• Transformation of Integral Variables

• Transformation from the velocity space variables (v_{\perp}, θ_0) to the particle position s' and the guiding center position s_0 .

• Jacobian:
$$J = \frac{\partial(v_{\perp}, \theta_0)}{\partial(s', s_0)} = -\frac{\omega_c^2}{v_{\perp} \sin \omega_c \tau}$$

• Express v_{\perp} and θ_0 by s' and s_0 using $\tau = t - t'$, e.g.,

$$v_{\perp}\sin(\omega_{\rm c}\tau+\theta_0) = \frac{\omega_{\rm c}}{v_{\perp}}\frac{s-s'}{2}\frac{1}{\tan\frac{1}{2}\omega_{\rm c}\tau} + \frac{\omega_{\rm c}}{v_{\perp}}\left(\frac{s+s'}{2}-s_0\right)\tan\frac{1}{2}\omega_{\rm c}\tau$$

- Integration over τ : Fourier expansion with cyclotron motion
- Integration over v_{\parallel} : Plasma dispersion function

Final Form of Induced Current

• Induced current:

$$\begin{pmatrix} J_s^{mn}(s) \\ J_p^{mn}(s) \\ J_b^{mn}(s) \end{pmatrix} = \int ds' \sum_{m'n'} \overleftrightarrow{\sigma}^{m'n'mn}(s,s') \cdot \begin{pmatrix} E_s^{m'n'}(s') \\ E_p^{m'n'}(s') \\ E_b^{m'n'}(s') \end{pmatrix}$$

• Electrical conductivity:

$$\overleftrightarrow{\sigma}^{m'n'mn}(s,s') = -in_0 \frac{q^2}{m} \sum_{\ell} \int \mathrm{d}s_0 \int_0^{2\pi} \mathrm{d}\chi_0 \int_0^{2\pi} \mathrm{d}\zeta_0 \exp i\left\{(m'-m)\chi_0 + (n'-n)\zeta_0\right\} \overleftrightarrow{H}_{\ell}(s,s',s_0,\chi_0,\zeta_0)$$

- Matrix coefficients: $\overleftrightarrow{H}_{\ell}(s, s', s_0, \chi_0, \zeta_0)$
 - \circ Four kinds of Kernel functions including $\mathit{s}, \mathit{s'}, \mathit{s}_0$ and harmonics number ℓ
 - The kernel functions are localized within several thermal gyroradii.
 - Plasma dispersion function

• Kernel Function and its integrals

$$F_n^{(i)}(X,Y) \equiv \frac{1}{2\pi^2} \int_0^{\pi} \mathrm{d}\theta \exp\left[-\frac{X^2}{1+\cos\theta} - \frac{Y^2}{1-\cos\theta}\right] f_n^{(i)}(\theta) \qquad \qquad f_n^{(i)}(\theta) = \begin{cases} \frac{\cos n\theta}{\sin\theta} & (i=1)\\ \sin n\theta & (i=2)\\ \frac{\sin n\theta}{\sin^2\theta} & (i=3)\\ \frac{\cos\theta\sin n\theta}{\sin^2\theta} & (i=4) \end{cases}$$

Status of extension to 3D configuration

- In a homogeneous plasma, usual formula including th Bessel functions can be recovered.
- Kernel functions are the same as the 1D case,
- FEM formulation is required for convolution integral.
- Development of the FEM version of TASK/WM is ongoing (almost complete).
- Integral operator code in 3D configuration is waiting for the FEM version of TASK/WM.

Consistent Formulation of Integral Full Wave Analysis

Full wave analysis for arbitrary velocity distribution function
 Dielectric tensor:

$$\nabla \times \nabla \times \boldsymbol{E}(\boldsymbol{r}) - \frac{\omega^2}{c^2} \int \mathrm{d}\boldsymbol{r}_0 \int \mathrm{d}\boldsymbol{r}' \, \frac{\boldsymbol{p}'}{m\gamma} \frac{\partial f_0(\boldsymbol{p}', \boldsymbol{r}_0)}{\partial \boldsymbol{p}'} \cdot \boldsymbol{K}_1(\boldsymbol{r}, \boldsymbol{r}', \boldsymbol{r}_0) \cdot \boldsymbol{E}(\boldsymbol{r}') = \mathrm{i} \, \omega \mu_0 \boldsymbol{j}_{\mathrm{ext}}$$

where r_0 is the gyrocenter position.

Fokker-Planck analysis including finite gyroradius effects
 Quasi-linear operator

$$\frac{\partial f_0}{\partial t} + \left(\frac{\partial f_0}{\partial p}\right)_{\boldsymbol{E}} + \frac{\partial}{\partial p} \int d\boldsymbol{r} \int d\boldsymbol{r}' \boldsymbol{E}(\boldsymbol{r}) \, \boldsymbol{E}(\boldsymbol{r}') \cdot \boldsymbol{K}_2(\boldsymbol{r}, \boldsymbol{r}', \boldsymbol{r}_0) \cdot \frac{\partial f_0(\boldsymbol{p}', \boldsymbol{r}_0, t)}{\partial \boldsymbol{p}'} = \left(\frac{\partial f_0}{\partial \boldsymbol{p}}\right)_{\text{col}}$$

- The kernels K_1 and K_2 are closely related and localized in the region $|\mathbf{r} \mathbf{r}_0| \leq \rho$ and $|\mathbf{r}' \mathbf{r}_0| \leq \rho$.
- To be challenged

Summary

• Comprehensive analyses of ICRF heating in tokama plasmas

 Time-evolution of the velocity distribution functions and the finite gyroradius effects have to be consistently included. For this purpose, the extension of the integrated code TASK is ongoing.

• Self-consistent analysis including modification of f(p)

 Full wave analysis with arbitrary velocity distribution function and Fokker-Planck analysis using full wave field are available. Preliminary result of self-consistent analysis was obtained.

• 3D full wave analysis including the finite gyroradius effects:

 1D analysis elucidated the importance of the gyroradius effects of energetic ions. Formulation was extended to a 2D configuration. Implementation is waiting for the FEM version of TASK/WM.