Integrated Modeling of Tokamak Plasmas by TASK Code

A. Fukuyama and M. Honda
Department of Nuclear Engineering, Kyoto University

Contents

• BPSI: Burning Plasma Simulation Initiative
• TASK: Core Code for Integrated Modeling
• Summary
First Korea-Japan Fusion Theory Workshop

- Japan-Korea Collaboration Program for Fusion Research
 - Started in **2005**
 - **Category**
 - KSTAR/LHD/JT-60
 - Fusion Theory
 - Fusion Technology
 - Fusion Plasma (except theory and technology)

- Fusion Theory
 - Key Persons (Korea, Japan: Fukuyama)
 - Workshop/Conference, Personal exchange
 - **Japan → Korea**: one WS and a few PX per year expected
 - **Korea → Japan**: ?
Burning Plasma Simulation

• Why needed?
 ◦ To predict the behavior of burning plasmas
 ◦ To develop reliable and efficient schemes to control them

• What is needed?
 ◦ Simulation describing a burning plasma:
 — Whole plasma (core & edge & divertor & wall-plasma)
 — Whole discharge (startup & sustainment & transients events & termination)
 — Reasonable accuracy (validation with experimental data)
 — Reasonable computer resources (still limited)

• How can we do?
 ◦ Gradual increase of understanding and accuracy
 ◦ Organized development of simulation system
BPSI: Burning Plasma Simulation Initiative

Research Collaboration among Universities, NIFS and JAEA

Since 2002
Targets of BPSI

• **Framework** for collaboration of various plasma simulation codes
 ◦ **Common interface** for data transfer and execution control
 ◦ **Standard data set** for data transfer and data storage
 ◦ **Reference core code**: TASK
 ◦ **Helical configuration**: included

• **Physics integration** with different time and space scales
 ◦ **Transport during and after a transient MHD events**
 ◦ **Transport in the presence of magnetic islands**
 ◦ **Core-SOL interface** and . . .

• **Advanced technique** of computer science
 ◦ **Parallel computing**: PC cluster, Scalar-Parallel, Vector-Parallel
 ◦ **Distributed computing**: GRID computing, Globus, ITBL
Integrated Code Development Based on BPSI Framework

Integrated code: TASK and TOPICS
TASK Code

- **Transport Analysing System for TokamaK**

- **Features**
 - **Core of Integrated Modeling Code in BPSI**
 - Modular structure
 - Reference data interface and standard data set
 - **Various Heating and Current Drive Scheme**
 - EC, LH, IC, AW, NB
 - **High Portability**
 - Most of library routines included (except LAPACK and MPI)
 - Own graphic libraries (X11, eps, OpenGL)
 - **Development using CVS** (Concurrent Version System)
 - Open Source (Pre-release with f77: http://bpsi.nucleng.kyoto-u.ac.jp/task/)
 - **Parallel Processing using MPI Library**
 - **Extension to Toroidal Helical Plasmas**
Modules of TASK

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>EQ</td>
<td>2D Equilibrium</td>
<td>Fixed/Free boundary, Toroidal rotation</td>
</tr>
<tr>
<td>TR</td>
<td>1D Transport</td>
<td>Diffusive transport, Transport models</td>
</tr>
<tr>
<td>WR</td>
<td>3D Geometr. Optics</td>
<td>EC, LH: Ray tracing, Beam tracing</td>
</tr>
<tr>
<td>WM</td>
<td>3D Full Wave</td>
<td>IC, AW: Antenna excitation, Eigen mode</td>
</tr>
<tr>
<td>FP</td>
<td>3D Fokker-Planck</td>
<td>Relativistic, Bounce-averaged</td>
</tr>
<tr>
<td>DP</td>
<td>Wave Dispersion</td>
<td>Local dielectric tensor, Arbitrary $f(v)$</td>
</tr>
<tr>
<td>PL</td>
<td>Data Interface</td>
<td>Data conversion, Profile database</td>
</tr>
<tr>
<td>LIB</td>
<td>Libraries</td>
<td></td>
</tr>
</tbody>
</table>

Under Development

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TX</td>
<td>Transport analysis including plasma rotation and E_r</td>
</tr>
<tr>
<td>WA</td>
<td>Global linear stability analysis</td>
</tr>
<tr>
<td>WI</td>
<td>Integro-differential wave analysis (FLR, $k \cdot \nabla B \neq 0$)</td>
</tr>
</tbody>
</table>

All developed in Kyoto U
Modular Structure of TASK

Experimental Database

- ITPA Profile DB
- JT-80 Exp. Data
- Simulation DB

Data Interface

- PL

Equilibrium
- EQ

Transport
- TR

Fokker-Planck
- FP

Ray Tracing
- WR

Full Wave
- WM

Wave Dispersion
- DP

Variables:
- $p(\psi), q(\psi), u_\psi(\psi)$
- p, q, T, j_{CD}
- $E(\rho, \theta, \phi)$
- $n, T, B, f(p_{\parallel}, p_{\perp})$
- $P_{abs}(R, Z, \phi)$

Functions:
- $\epsilon(\rho, \theta, \phi)$
- $\epsilon(R, Z, \phi)$
- ϵ
Data Interface Layer PL

• **Role of Interface Layer**
 - To keep the present status of plasma
 - To store the history of plasma
 - Interface to file system
 - Interface to experimental profile database
 - Interface to simulation profile database

• **Data to be stored**
 - **Standard dataset**
 - Shot data, Device data
 - Equilibrium data, Metric data
 - Fluid plasma data, Kinetic plasma data
 - Dielectric tensor data, Full wave data, Ray/Beam tracing data
 - **User-defined data**
Standard Dataset (interim)

Shot data
- Machine ID, Shot ID, Model ID

Device data: (Level 1)
- RR \(R \) m Geometrical major radius
- RA \(a \) m Geometrical minor radius
- RB \(b \) m Wall radius
- BB \(B \) T Vacuum toroidal mag. field
- RKAP \(\kappa \) Elongation at boundary
- RDLT \(\delta \) Triangularity at boundary
- RIP \(I_p \) A Typical plasma current

Equilibrium data: (Level 1)
- PSI2D \(\psi_p(R,Z) \) Tm\(^2\) 2D poloidal magnetic flux
- PSIT \(\psi_t(\rho) \) Tm\(^2\) Poloidal magnetic flux
- PSIP \(\psi_p(\rho) \) Tm\(^2\) Poloidal magnetic flux
- PPSI \(p(\rho) \) MPa Plasma pressure
- TPSI \(T(\rho) \) Tm \(B_\phi R \)
- QPSI \(1/q(\rho) \) Safety factor

Metric data
- 1D: \(V'(\rho), \langle \nabla V \rangle (\rho), \cdots \)
- 2D: \(g_{ij}, \cdots \)
- 3D: \(g_{ij}, \cdots \)

Fluid plasma data
- NSMAX \(s \) Number of particle species
- PA \(A_s \) Atomic mass
- PZ0 \(Z_{0s} \) Charge number
- PZ \(Z_s \) Charge state number
- PN \(n_s(\rho) \) m\(^3\) Number density
- PT \(T_s(\rho) \) eV Temperature
- PU \(u_{s\Phi}(\rho) \) m/s Toroidal rotation velocity

Kinetic plasma data
- FP \(f(p, \theta_p, \rho) \) momentum dist. fn at \(\theta = 0 \)

Dielectric tensor data
- CEPS \(\tilde{\epsilon}(\rho, \chi, \zeta) \) Local dielectric tensor

Full wave field data
- CE \(E(\rho, \chi, \zeta) \) V/m Complex wave electric field
- CB \(B(\rho, \chi, \zeta) \) Wb/m\(^2\) Complex wave magnetic field

Ray/Beam tracing field data
- RRAY \(R(\ell) \) m \(R \) of ray at length \(\ell \)
- ZRAY \(Z(\ell) \) m \(Z \) of ray at length \(\ell \)
- PRAY \(\phi(\ell) \) rad \(\phi \) of ray at length \(\ell \)
- CERAY \(E(\ell) \) V/m Wave electric field at length \(\ell \)
- PWRAY \(P(\ell) \) W Wave power at length \(\ell \)
- DRAY \(d(\ell) \) m Beam radius at length \(\ell \)
- VRAY \(v(\ell) \) 1/m Beam curvature at length \(\ell \)
Execution Control Interface in BPSI

- **Example for TASK/TR**

<table>
<thead>
<tr>
<th>TR_INIT</th>
<th>Initialization (Default value)</th>
<th>BPSX_INIT('TR')</th>
</tr>
</thead>
<tbody>
<tr>
<td>TR_PARM(ID,PSTR)</td>
<td>Parameter setup (Namelist input)</td>
<td>BPSX_PARM('TR',ID,PSTR)</td>
</tr>
<tr>
<td>TR_PROF(T)</td>
<td>Profile setup (Spatial profile, Time)</td>
<td>BPSX_PROF('TR',T)</td>
</tr>
<tr>
<td>TR_EXEC(DT)</td>
<td>Exec one step (Time step)</td>
<td>BPSX_EXEC('TR',DT)</td>
</tr>
<tr>
<td>TR_GOUT(PSTR)</td>
<td>Plot data (Plot command)</td>
<td>BPSX_GOUT('TR',PSTR)</td>
</tr>
<tr>
<td>TR_SAVE</td>
<td>Save data in file</td>
<td>BPSX_SAVE('TR')</td>
</tr>
<tr>
<td>TR_LOAD</td>
<td>load data from file</td>
<td>BPSX_LOAD('TR')</td>
</tr>
<tr>
<td>TR_TERM</td>
<td>Termination</td>
<td>BPSX_TERM('TR')</td>
</tr>
</tbody>
</table>

- **Module registration**

 TR_STRUCT%INIT=TR_INIT
 TR_STRUCT%PARAM=TR_PARM
 TR_STRUCT%EXEC=TR_EXEC
 ...
 BPSX_REGISTER('TR',TR_STRUCT)
<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EQ/WM</td>
<td>Full Wave Analysis of ECH in a Small-Size ST</td>
</tr>
<tr>
<td>WM/FP/DP</td>
<td>Development of Self-Consistent Wave Analysis</td>
</tr>
<tr>
<td>EQ/TR</td>
<td>Transport Simulation for ITER</td>
</tr>
<tr>
<td>EQ/TR/MW/DP</td>
<td>Integrated Analysis of AE in ITER Plasma</td>
</tr>
<tr>
<td>WA</td>
<td>Full Wave Analysis of RWM</td>
</tr>
</tbody>
</table>
Full Wave Analysis of ECH in a Small-Size ST

- **Small-size spherical tokamak: LATE** (Kyoto University)
 - T. Maekawa et al., IAEA-CN-116/EX/P4-27 (Vilamoura, Portugal, 2004)
 - $R = 0.22$ m, $a = 0.16$ m, $B_0 = 0.0552$ T, $I_p = 6.25$ kA, $\kappa = 1.5$
 - $f = 2.8$ GHz, Toroidal mode number $n = 12$, Extraordinary mode

Penetration through cutoff layer \implies Propagation along the UHR layer \implies Collisional damping near the UHR layer

![Graphs](image-url)
Self-Consistent Wave Analysis with Modified $f(v)$

- **Modification of velocity distribution from Maxwellian**
 - Absorption of ICRF waves in the presence of energetic ions
 - Current drive efficiency of LHCD
 - NTM controllability of ECCD (absorption width)

- **Self-consistent wave analysis including modification of $f(v)$**
Development of Self-Consistent Wave Analysis

• **Code Development in TASK**
 ◦ Ray tracing analysis with arbitrary $f(v)$: **Already done**
 ◦ Full wave analysis with arbitrary $f(v)$: **Completed**
 ◦ Fokker-Plank analysis of ray tracing results: **Already done**
 ◦ Fokker-Plank analysis of full wave results: **Almost competed**
 ◦ Self-consistent iterative analysis: **Preliminary**

• **Tail formation by ICRF minority heating**

Momentum Distribution Tail Formation Power deposition

![Graphs showing momentum distribution, tail formation, and power deposition.](image-url)
CDBM Transport Model: CDBM05

- **Thermal Diffusivity** (Marginal: $\gamma = 0$)

$$\chi_{TB} = F(s, \alpha, \kappa, \omega_{E1}) \alpha^{3/2} \frac{c^2}{\omega_{pe}^2} \frac{v_A}{qR}$$

- Magnetic shear

$$s \equiv \frac{r}{q} \frac{d}{dr}$$

- Pressure gradient

$$\alpha \equiv -q^2 R \frac{d\beta}{dr}$$

- Elongation

$$\kappa \equiv \frac{b}{a}$$

- $E \times B$ rotation shear

$$\omega_{E1} \equiv \frac{r^2}{s v_A} \frac{d}{dr} \frac{E}{r B}$$

- Weak and negative magnetic shear,

- Shafranov shift, elongation,

and $E \times B$ rotation shear

reduce thermal diffusivity.

\[F(s, \alpha, \kappa, \omega_{E1}) = \left(\frac{2\kappa^{1/2}}{1 + \kappa^2} \right)^{3/2} \]

\[
1 \quad \frac{1}{1 + G_1 \omega_{E1}^2 \sqrt{2}(1 - 2s')(1 - 2s' + 3s'^2)} \\
\text{for} \quad s' = s - \alpha < 0
\]

\[
1 \quad \frac{1}{1 + 9 \sqrt{2}s'^5/2} \\
\text{for} \quad s' = s - \alpha > 0
\]
Comparison of Transport Models: ITPA Profile DB

Deviation of Stored Energy

CDBM

CDBM05

GLF23

Weiland
TFTR #88615 (L-mode, NBI heating)

CDBM

CDBM05

GLF23

Weiland

Common Profiles
High Q Operational Scenario

- Large plasma current: $I_p = 15$ MA,
 On-axis heating: $P_{NB} = 40$ MW
- Positive shear profile,
 Relatively large f_{OH}

\[
CDBM
\quad \beta_N = 1.49
\quad \tau_E = 3.0 \text{ s}
\]

\[
CDBM05
\quad \beta_N = 2.63
\quad \tau_E = 3.1 \text{ s}
\]
Hybrid Operational Scenario

- Moderate plasma current: \(I_p = 12 \text{ MA} \), On-axis heating: \(P_{NB} = 33 \text{ MW} \)
- Flat \(q \) profile with small ITB inside \(\rho = 0.4 \)

\[\beta_N = 1.17 \quad \tau_E = 3.1 \text{ s} \]

\[\beta_N = 2.58 \quad \tau_E = 3.6 \text{ s} \]
Quasi-Steady State Operational Scenario

- $I_p = 6 \rightarrow 9$ MA for 10 s, Negative shear profile, $I_{OH} \sim 0$

![Graphs showing temperature profiles and power dissipation](image)

CDBM
- $\beta_N = 1.2$
- $\tau_E = 3.0$ s

CDBM05
- $\beta_N = 1.55$
- $\tau_E = 3.2$ s

Power Dissipation

- $P_{NB} = 35$ MW
- $P_{LH} = 30$ MW

- $P_{NB} = 17$ MW
- $P_{LH} = 25$ MW
• Control of current profile in the hybrid operation requires more improvement to keep $q(0) > 1$.

• Performance of the quasi steady-state operation will be improved if the H-mode plasma edge (edge transport barrier) are included.
Integrated Analysis of AE in ITER Plasma

- **Combined Analysis**
 - **Equilibrium**: TASK/EQ
 - **Transport**: TASK/TR
 - Turbulent transport model: CDBM
 - Neoclassical transport model: NCLASS (Houlberg)
 - Heating and current profile: given profile
 - **Full wave analysis**: TASK/WM

- **Stability analysis**
 - Standard H-mode operation: \(I_p = 15 \text{ MA}, Q \sim 10 \)
 - Hybrid operation: \(I_p = 12 \text{ MA}, \text{ flat } q \text{ profile above 1} \)
 - Steady-state operation: \(I_p = 9 \text{ MA}, \text{ reversed shear} \)
Standard H-mode Operation

- $I_p = 15$ MA
- $P_{NB} = 33$ MW
- $\beta_N = 1.3$
AE in Standard H-mode Operation

q profile

Alfvén Continuum

Mode structure ($n = 1$)

E_{θ}

$m = -1$

$f_r = 95.95$ kHz

$f_i = -1.95$ kHz

Stabilization due to $q = 1$
Full Wave Analysis of RWM (TASK/WA)

- **Full wave analysis**: solving Maxwell’s equation
 \[
 \nabla \times \nabla \times E = \frac{\omega^2}{c^2} \epsilon \cdot E + i \omega \mu_0 j_{\text{ext}}
 \]

- Resistive MHD dielectric tensor including diamagnetic flow
- Ferromagnetic Resistive wall

b/a dependence

![Graph showing b/a dependence](image)

Rotation dependence

![Graph showing Rotation dependence](image)
Future Plan of TASK code

Present Status

<table>
<thead>
<tr>
<th>Equilibrium</th>
<th>Fixed/Free Boundary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Transport</td>
<td>1D Diffusive TR</td>
</tr>
<tr>
<td></td>
<td>1D Dynamic TR</td>
</tr>
<tr>
<td>SOL Transport</td>
<td>2D Fluid TR</td>
</tr>
<tr>
<td>Neutral Transport</td>
<td>1D Diffusive TR</td>
</tr>
<tr>
<td>Energetic Ions</td>
<td>Kinetic Evolution</td>
</tr>
<tr>
<td>Wave Beam</td>
<td>Ray/Beam Tracing</td>
</tr>
<tr>
<td>Full Wave</td>
<td>Kinetic ϵ</td>
</tr>
<tr>
<td>Stabilities</td>
<td>Sawtooth Osc.</td>
</tr>
<tr>
<td>Turbulent Transport</td>
<td>CDBM Model</td>
</tr>
</tbody>
</table>

In 2 years

<table>
<thead>
<tr>
<th>Equilibrium Evolution</th>
<th>Kinetic TR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Transport</td>
<td>2D Fluid TR</td>
</tr>
<tr>
<td>SOL Transport</td>
<td>Plasma-Wall Interaction</td>
</tr>
<tr>
<td>Neutral Transport</td>
<td>Orbit Following</td>
</tr>
<tr>
<td>Energetic Ions</td>
<td>Orbit Following</td>
</tr>
<tr>
<td>Wave Beam</td>
<td>Beam Propagation</td>
</tr>
<tr>
<td>Full Wave</td>
<td>Gyro Integral ϵ</td>
</tr>
<tr>
<td>Stabilities</td>
<td>Tearing Mode</td>
</tr>
<tr>
<td>Turbulent Transport</td>
<td>Resistive Wall Mode</td>
</tr>
</tbody>
</table>

In 5 years

<table>
<thead>
<tr>
<th>Start Up Analysis</th>
<th>Systematic Stability Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nonlinear ZK + ZF</td>
<td>Diagnostic Module</td>
</tr>
<tr>
<td></td>
<td>Control Module</td>
</tr>
</tbody>
</table>
Summary

• We are developing **TASK** code as a reference core code for burning plasma simulation based on transport analysis.

• **Standard dataset** and **module interface** will be implemented by the end of this summer.

• Preliminary results of **self-consistent analysis of wave heating and current drive** describing the time evolution of the momentum distribution function and its influence on the wave propagation and absorption have been obtained.

• **Extension to 3D configuration** is on-going in collaboration with NIFS.

• **Cooperation with TOPICS code** (developed in JAEA) has started.
Access to TASK code

- **Required Environment**
 - Unix-like OS (Linux, Mac OSX, · · ·)
 - X-window system
 - Fortran95 compiler (gfortran, g95, ifort, pgf95, xlf95, sxfs90, · · ·)

- **Source code**
 - **Stable version**: Web site (http://bpsi.nucleng.kyoto-u.ac.jp/task/)
 - **Latest version**: CVS tree (Read only) [password required]
 - **Developer**: CVS tree (R/W) [account required]

- **User support**
 - Uniform user interface
 - English guidebook in preparation: by the end of 2006